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Why am I bothering to go over something this basic?

I When we do SMM we try to minimize something that looks like:

(simulated moments− data moments)′(weight matrix)(simulated moments− data moments)

I Stephen just told you how to calculate the simulated moments

I The data moments are easy

I But how do you calculate the weight matrix?
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Why am I bothering to go over something this basic?

I Far too many structural papers calculate weight matrices and standard errors incorrectly.

I Do not bootstrap the weight matrix. (Horowitz 2001).

I Calculating the weight matrix from simulated data is in principle fine, but you are taking the
model too seriously.

I I am going to use basic GMM theory to teach you how to calculate weight matrices correctly
and easily.

I Some of this material will be very new to you.
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The Setup
I The following uses the notation in Wooldridge.

I Let
I Let wi be an (M × 1) be an i.i.d. vector of random variables for observation i.

I θ be an (P × 1) vector of unknown coefficients.

I g (wi,θ) be an (L× 1) vector of functions g :
(
RM ×RP

)
→RL, L ≥ P

I The function g(wi,θ) can be nonlinear.

I Let θ0 be the true value of θ.

I Let θ̂ represent an estimate of θ.

I The “hat” and “naught” notation applies to anything we might want to estimate.
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Moment Restrictions

I GMM is based on what are generally called moment restrictions and sometimes called
orthogonality conditions (The latter terminology comes from the rational expectations
literature.)

E (g (wi,θ0)) = 0

I This condition is expressed in terms of the population. The corresponding sample moment
restriction is

1

N

N∑
i=1

g (wi,θ) = 0

I What we want to do is choose θ̂ to get N−1
∑N
i=1 g (wi,θ) as close to zero as possible.
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Examples of Moment Restrictions

I IV estimation:
I Suppose you have a regression

yi = xiβ + ui,

and E(ui | xi) 6= 0.

I Or, suppose you have a nonlinear regression

yi = f(xi, β) + ui,

and E(ui | xi) 6= 0.

I In either case suppose also that you have a vector of instruments zi, that is uncorrelated with ui,
and whose dimension is at least as great as β. Then the moment restriction is

E(ziui) = 0
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Criterion Function

I The estimator, θ̂ minimizes a quadratic form:

QN (θ) =

[
N−1

N∑
i=1

g (wi,θ)

]′
Ξ̂

[
N−1

N∑
i=1

g (wi,θ)

]
(1× L) (L× L) (L× 1)

where Ξ̂ is a positive definite matrix that converges in probability to Ξ0

I In this case, QN converges in probability to

{E [g (wi,θ)]}′Ξ{E [g (wi,θ)]}
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Exact and Overidentification

I If L = P , then the estimator is exactly identified, and we can find θ by solving

N−1
N∑
i=1

g (wi,θ) = 0

I If L > P , the model is overidentified and if it is nonlinear, you usually have to use numerical
techniques.

I If g (wi,θ) has first derivatives with no closed form solutions, these numerical techniques can
take a very long time.
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Optimal Weighting Matrix

I The symbol Ξ represents any arbitrary, positive definite weighting matrix.

I The optimal weighting matrix is the inverse of the variance of g (wi,θ). Call this variance

Λ ≡ E
(
g (wi,θ) g (wi,θ)

′)
.

I Estimating Λ̂. Doing GMM is a bit circular. We want to minimize

QN (θ) =

[
N−1

N∑
i=1

g (wi,θ)

]′
Λ̂
−1

[
N−1

N∑
i=1

g (wi,θ)

]

to get an estimate of θ. But we need an estimate of θ to estimate Λ̂.
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Estimating the Optimal Weighting Matrix
I You can estimate Λ̂ by

Λ̂ ≡ 1

N

N∑
i=1

[g (wi,θ)] [g (wi,θ)]
′

I The usual procedure is as follows:
I Estimate θ using Λ̂ ≡ I. (This θ is consistent but not efficient.)

I Use this estimate of θ to estimate Λ̂.

I Re-estimate θ using the estimate of Λ̂.

I Keep going until θ converges.

I With most SMM applications, you can calculate the weight matrix without knowledge of the model
parameters, so all of this is unnecessary.
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Asymptotic Distribution of GMM Estimators

I Define the following

G′ =
∂g (wi,θ)

∂θ′

∣∣∣∣
θ=θ̂N

G′0 = E
(
G′
)

I Note ∂g (wi,θ) /∂θ′ is a MATRIX

∂g (wi,θ) /∂θ′ ≡

 ∂g1/∂θ1 ∂g1/∂θ2 . . . ∂g1/∂θP
...

...
. . .

...
∂gL/∂θ1 ∂gL/∂θ2 . . . ∂gL/∂θP



I The Jacobian of g (wi,θ) w.r.t. θ, with dimension P × L.
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Asymptotic Distribution of GMM Estimators

I Then the asymptotic distribution of
√
N
(
θ̂ − θ0

)
is N (0,V ) , in which

V ≡
[
G0Λ

−1G′0
]−1

(P × L)(L× L)(L× P )

I Heuristic “Proof:” Recall that we are trying to minimize:

QN (θ) =

[
N−1

N∑
i=1

g (wi,θ)

]′
Ξ̂

[
N−1

N∑
i=1

g (wi,θ)

]

I How do you minimize anything? Take the derivative w.r.t θ and set the result equal to zero.
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Asymptotic Distribution of GMM Estimators
I Take the derivative, and w.p.a. 1, it equals zero.

∂QN (wi,θ)/ ∂θ = 0

2

[
N−1

N∑
i=1

G (wi,θ)

]
Ξ̂

[
N−1

N∑
i=1

g (wi,θ)

]
= 0[

N−1
N∑
i=1

G (wi,θ)

]
Ξ̂

[
N−1

N∑
i=1

g (wi,θ)

]
= 0

I Now take a mean-value (not Taylor) expansion of
∑N
i=1 g (wi,θ)

N∑
i=1

g (wi,θ) =

N∑
i=1

g
(
wi, θ̄

)
+

N∑
i=1

G′ (θ − θ0)

in which θ̄ is some vector between θ and θ0.
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Asymptotic Distribution of GMM Estimators
I Now we substitute this mean value expansion into the first order condition, replace random

averages with their plims, and solve away.

G0Ξ0

[
N
−1

N∑
i=1

g
(
wi, θ̄

)
+G

′
0 (θ − θ0)

]
= 0

G0Ξ0G
′
0 (θ − θ0) = −G0Ξ0

[
N∑

i=1

g
(
wi, θ̄

)]

(θ − θ0) = −
(
G0Ξ0G

′
0

)−1
G0Ξ0

[
N
−1

N∑
i=1

g
(
wi, θ̄

)]
√
N (θ − θ0) = −

(
G0Ξ0G

′
0

)−1
G0Ξ0

[
N
−1/2

N∑
i=1

g
(
wi, θ̄

)]

I The expression in this last line contains what is called an “influence function.” We will come
back to this shortly.
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Asymptotic Distribution of GMM Estimators
I So, dropping the “naught” notation from G and Ξ, for simplicity:

E (θ − θ0) (θ − θ0)
′ ≡

E

(GΞG
′)−1

GΞ

[
N
−1

N∑
i=1

g
(
wi, θ̄

)] [
N
−1

N∑
i=1

g
(
wi, θ̄

)]′
ΞG
′ (
GΞG

′)−1

 =

(
GΞG

′)−1
GΞΛΞG

′ (
GΞG

′)−1

I Note that if we set Ξ ≡ Λ−1, then this mess reduces as follows:

(
GΛ
−1
G
′
)−1

GΛ
−1

ΛΛ
−1
G
′
(
GΛ
−1
G
′
)−1

=(
GΛ
−1
G
′
)−1

GΛ
−1
G
′
(
GΛ
−1
G
′
)−1

=(
GΛ
−1
G
′
)−1
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Asymptotic Distribution of GMM Estimators

I (GΞG′)
−1
GΞΛΞG′ (GΞG′)

−1 is always greater than
(
GΛ−1G′

)−1, in the sense that the difference
between the two is a positive definite matrix.

I So an efficient estimate of the variance of θ̂ is given by

1

N

{
GΛ̂

−1
G′
}−1

I What if we want to calculate the variance of an H × 1 dimensional function h
(
θ̂
)

, H ≤ P?

I We can use the “delta-method,” which gives the variance of h
(
θ̂
)

as(
∂h

∂θ

){
1

N

{
GΛ̂

−1
G′
}−1

}(
∂h

∂θ

)′
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Overidentifying Restrictions

I If L > P , the model is overidentified. We have more equations than unknowns.

I Presumably we could take different subsets of P equations and solve exactly for the P
elements of θ.

I Testing the overidentifying restrictions intuitively is a matter of testing to see if different exactly
identified subsets of moment restrictions have the same solution.

I If the model is correct, then each of these answers should be the same.
I What does this idea tell you about an informal way to see if the overidentifying restrictions are

rejected?
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Hansen’s J-Test

I The following statistic

N

(
1

N

N∑
i=1

g (wi,θ)

)′
Λ̂
−1

(
1

N

N∑
i=1

g (wi,θ)

)
converges to a χ2 statistic with (L− P ) degrees of freedom under the null that the
overidentifying restrictions hold.

I This is what is called a portmanteau test. “Wearovercoat”

I It tests for general misspecification, not any specific sort.

I The GMM J-test therefore need not be very powerful to detect misspecification.
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Why am I torturing you with influence functions?
I Our GMM/SMM weight matrices will be very complicated. Example:

I Moments = M = [Mean Variance RegressionSlope1 RegressionSlope2]

I Optimal weight matrix = cov(M)−1

I How to estimate covariance between a mean and a variance?

I How to estimate covariance between slopes from two separate regressions?

I Etc.

I Especially hard if we need to cluster by firm, etc.

I Influence functions give you a simple way to estimate cov(M)

I Beyond structural estimation, if you know how to use influence functions, you know how to
estimate the standard error for anything!
I Test for serial correlation of the residuals of a nonlinear panel model?
I Hausman test when the Hausman assumptions are not satisfied.
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General Definition of an Influence Function

I Consider any estimator θ̂, and suppose there is a function φ(wi) such that

√
N
(
θ̂ − θ0

)
=

N∑
i=1

φ(wi)/
√
N + op(1), E(φ(wi) = 0, E(φ(wi)φ(wi)

′) exists.

I then φ(wi) is called the influence function of θ̂.

I In words, it gives the effect of a single observation on the estimator, up to the op(1) remainder
term.

I In different words, an influence function is a function of the data whose mean has the same
asymptotic variance as the estimator.
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Influence Function for a GMM Estimator
I Now reconsider the expression

√
N (θ − θ0) = −

(
G0Ξ0G

′
0

)−1
G0Ξ0

[
N−1/2

N∑
i=1

g
(
wi, θ̄

)]
and compare it to the general expression for an influence function:

√
N
(
θ̂ − θ0

)
=

n∑
i=1

φ(wi)/
√
N + op(1)

I The only real difference is the op(1) term, but somewhere in there we substituted plims in for sample
averages, so the influence function for a GMM estimator must be:

I So the influence function for a GMM estimator must be:

−
(
G0Ξ0G

′
0

)−1
G0Ξ0g

(
wi, θ̄

)
I End of proof by staring. For a real, but logically similar proof, see Newey and McFadden (1994).
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Example
I Recall the definition of an influence function (and dropping the zero subscripts):

−
(
GΞG

′)−1
GΞg

(
wi, θ̄

)

I What is the influence function for the estimate of the mean of a random variable zi with mean
µ?

g
(
wi, θ̄

)
≡ zi − µ

Ξ ≡ 1

G ≡ 1

φ
(
wi, θ̄

)
≡ − (zi − µ)

The sample counterpart for observation i is

−zi +N−1
N∑
i=1

zi
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Example
I Consider a simple linear regression

yi = xiβ + ui
I What is the influence function for β?

g
(
wi, θ̄

)
≡ xi · ui
= xi · (yi − xiβ)

Ξ ≡ σ2E (x′ixi)
−1

G ≡ E (x′ixi)

φ
(
wi, θ̄

)
≡ −E (x′ixi)

−1
(xi · (yi − xiβ))

The sample counterpart for observation i is

−

(
N−1

N∑
i=1

(x′ixi)

)−1

(xi · ui)

where the operator · is the Hadamard element-by-element operator.
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Stacking

I What if you estimate the mean µ and the OLS coefficient β, and you want to know the
covariance between these two estimates?

I Option 1: Just estimate them jointly in a big GMM system.

I Option 2: Stack the influence functions and take the inner product.1

I Let φ̂µ be the N × 1 sample influence function for µ.

I Let φ̂β be the N × k sample influence function for β.

1The reference for this is Erickson and Whited (2002).
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Stacking

I Let’s define

Φµβ ≡
[ (
−z +N−1

∑N
i=1 zi

) (
−
(
N−1

∑N
i=1 (x′ixi)

)−1

(x · u)

) ]
I Notice I dropped the i subscripts.

I The dimension of this matrix is N × (k + 1).

I The sample covariance matrix for
(
µ
β

)
is then

Φ′µβΦµβN
−2
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Sample Matlab Code
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Two-Step Estimation

I Suppose you are doing a GMM estimator, but you estimate one or more of the parameters
separately via a different procedure, and then plug these estimates into your GMM moment
equations.

I Why? Sometimes this type of exercise reduces the dimensionality of the problem substantially.

I How do you figure out the GMM covariance matrix?

I This is nontrivial because the GMM estimates inherit the sampling variability from the first step.
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Two-Step Estimation
I Let δ be a parameter vector of dimension S that you estimate in a first step via a different

procedure

I Then you plug δ into your moment vector to get

g(θ,wi, δ)

and use this moment vector to estimate θ.
I The variance of the two-step estimator is(

GΩ−1G′
)−1

I You can estimate Ω by

Ω̂ ≡
1

N

N∑
i=1

[
g (wi, θ)− E

(
∂g(θ,wi, δ)

∂δ

)
φ
δ
(δ,wi)

] [
g (wi, θ)− E

(
∂g(θ,wi, δ)

∂δ

)
φ
δ
(δ,wi)

]′
in which φδ is the influence function for δ.

I A clear derivation of this estimator is in Newey and McFadden’s chapter in the 4th volume of
the Handbook of Econometrics.
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Clustered Weight Matrices

I Everything I have taught you thus far is for i.i.d. data. Data are almost never i.i.d. in corporate
finance (or accounting).

I So how do you calculate a weight matrix and get your standard errors right if the data are not
i.i.d?

I We will consider the following case.
I The sample consists of K groups (clusters) of nk observations each (N = n1 + · · ·+ nK)

I Observations are independent across groups but dependent within groups

I K →∞, and nk fixed for each k.
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Clustered Weight Matrices

I We order observations by groups and use double-index notation so that

g(θ,w) ≡ {g(θ,w1,1), . . . , g(θ,wn1,1) | . . . | g(θ,w1,K), . . . , g(θ,wnk,K)}

I Under cluster sampling, the observations wn,k might be dependent within a cluster, k.

I I’m going to simplify notation

g1,1 ≡g(θ,w1,1)

ĝ1,1 ≡g(θ̂,w1,1)

Copyright c©Toni M. Whited GMM 30/35



Review of GMM Influence Functions Plug-in Estimators Clustering Panel AR(1) Coefficients

Clustered Weight Matrices
I Let

ḡ =

nk∑
j=1

gj,k

I Then we can define Λ as:

Λ = lim
N→∞

1

N

K∑
k=1

E
(
ḡkḡ

′
k

)
.

I Note that E
(
ḡiḡ
′
j

)
= 0 only if i and j belong to different clusters.

I Define:

g̃ =

nk∑
j=1

ĝj,k

I A consistent estimate of Λ is therefore:

Λ̂ =
1

N

K∑
k=1

g̃kg̃
′
k.
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Sample Matlab code for a balanced panel

Consider a panel with dimensions T and N :
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Dynamic models require the estimation of dynamics

I A large fraction of dynamic models have driving processes that follow autoregressive
processes.

I One statistic that needs to be matched in many structural estimations is an AR(1) coefficient.
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Consistent estimation of a first-order autoregressive coefficient with
fixed effects

I Suppose you have a variable

yit, i = 1, . . . , N, t = 1, . . . , T.

that follows a process
yit = αi + ρyit−1 + uit,

in which uit is possibly correlated with αi.

I OLS will not work.

I You cannot do firm-level deviations from means with a lagged dependent variable.

I Dynamic panel models suffer from weak instrument problems.
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Han and Phillips (2010)

I Han and Phillips (2010) use double differencing to remove the fixed effect.

I Some ugly but easy algebra shows that a consistent estimate of ρ is given by

ρ̂ =

∑N
i=1

∑T
t=2 ∆yit−1

(
2∆yit + ∆yit−1

)∑N
i=1

∑T
t=2

(
∆yit−1

)2
where ∆ is the first difference operator.

I This estimator is clearly obtained from regressing 2∆yit + ∆yit−1 on ∆yit−1.
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