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Why am | bothering to go over something this basic?
» When we do SMM we try to minimize something that looks like:
(simulated moments — data moments)’ (weight matrix)(simulated moments — data moments)
> Stephen just told you how to calculate the simulated moments
» The data moments are easy

> But how do you calculate the weight matrix?
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Why am | bothering to go over something this basic?

» Far too many structural papers calculate weight matrices and standard errors incorrectly.
» Do not bootstrap the weight matrix. (Horowitz 2001).

> Calculating the weight matrix from simulated data is in principle fine, but you are taking the
model too seriously.

> | am going to use basic GMM theory to teach you how to calculate weight matrices correctly
and easily.

> Some of this material will be very new to you.
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The Setup
> The following uses the notation in Wooldridge.

> Let
> Let w; be an (M x 1) be an i.i.d. vector of random variables for observation i.

»> 6 be an (P x 1) vector of unknown coefficients.

> g(w;, ) be an (L x 1) vector of functions g : (R x R") - R", L>P
» The function g(w,, #) can be nonlinear.
> Let 6, be the true value of 6.
> Let 0 represent an estimate of 6.

> The “hat” and “naught” notation applies to anything we might want to estimate.
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Moment Restrictions

» GMM is based on what are generally called moment restrictions and sometimes called
orthogonality conditions (The latter terminology comes from the rational expectations
literature.)

» This condition is expressed in terms of the population. The corresponding sample moment

restriction is
N

1
V2 9(wi.0)=0
i=1

» What we want to do is choose 6 to get N ~* Zf;l g (w;, 8) as close to zero as possible.
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Examples of Moment Restrictions

> |V estimation:
> Suppose you have a regression
Yi = TS + ui,
and E(ui | 1’1) # 0.

> Or, suppose you have a nonlinear regression

> In either case suppose also that you have a vector of instruments z;, that is uncorrelated with w;,
and whose dimension is at least as great as 5. Then the moment restriction is

E(zluz) =0
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Criterion Function

> The estimator, § minimizes a quadratic form:

Qy(0) = [legmi,e)} é[leg(wzvﬁ)}

(1x1L) (L x L) (L x1)

where E is a positive definite matrix that converges in probability to o

> In this case, Q, converges in probability to

{E g (w:, )]} E{E [g (w:, 0)]}
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Exact and Overidentification

» If L = P, then the estimator is exactly identified, and we can find 8 by solving

N
Nﬁlzg(’wi,e) =0
i=1

» |f L > P, the model is overidentified and if it is nonlinear, you usually have to use numerical
techniques.

> If g (w;, 0) has first derivatives with no closed form solutions, these numerical techniques can
take a very long time.
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Optimal Weighting Matrix

» The symbol E represents any arbitrary, positive definite weighting matrix.

> The optimal weighting matrix is the inverse of the variance of g (w,, ). Call this variance

A=E (9 (w;,0)g (wiae)/) :

» Estimating A. Doing GMM is a bit circular. We want to minimize

N
N71 Zg (wiv 0)‘|

i=1

/

N
Qn (0) = [Nl S g(w.0)| A
=1

to get an estimate of 8. But we need an estimate of 8 to estimate A.
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Estimating the Optimal Weighting Matrix

> You can estimate A by

A

le§ g (w:.0)] g (w;., 0)]

» The usual procedure is as follows:
> Estimate 6 using A = I. (This 6 is consistent but not efficient.)

> Use this estimate of 0 to estimate A.
> Re-estimate 6 using the estimate of A.
» Keep going until & converges.

> With most SMM applications, you can calculate the weight matrix without knowledge of the model
parameters, so all of this is unnecessary.
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Asymptotic Distribution of GMM Estimators

> Define the following

G = 69(“”79)
80/ 9:§N
G, - E()

> Note dg (w;,0) /96’ is a MATRIX

891/891 891 /802
dg (wi,0) /06" = |
0gr/001 Ogr /062

» The Jacobian of g (w;, ) w.r.t. 8, with dimension P x L.
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Asymptotic Distribution of GMM Estimators
» Then the asymptotic distribution of v N (9 - 00) is NV (0, V), in which

\%4

(Gon G5
(Px L)(L x L)(L x P)

> Heuristic “Proof:” Recall that we are trying to minimize:

N ! N
Qn (0) = lNl > g (wi, 0)] = [Nl > g (wi, 0)]
i=1 =1
» How do you minimize anything? Take the derivative w.r.t 8 and set the result equal to zero
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Asymptotic Distribution of GMM Estimators

> Take the derivative, and w.p.a. 1, it equals zero.

0Qy (w;,0)/00 = 0

N
[leg(fwm] =0
1;1
[legmi,m} =0
=1

[

N

2 [Nl > G (w;, 9)1
1;1

[Nl > G (w;, 0)1
=1

[

> Now take a mean-value (not Taylor) expansion of Zf‘;l g (w;, 0)

N N N

Zg('wi,e):Zg(wi,é)JrZG/(OfOO)

=1 =1 =1
in which 6 is some vector between 6 and 6.
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Asymptotic Distribution of GMM Estimators

> Now we substitute this mean value expansion into the first order condition, replace random
averages with their plims, and solve away.

N
GoEo N_lzg(wi,§)+G6(9700)] = 0
- N
GoEoGy (0 —0p) = —GoEo {Zg (wi,é)]
- N
(9790) = 7(G050G6)71G050 {N_lzg(wi,é)]
i=1
N
\/ﬁ(gfeo) = 7(G050G6)71G050 {N_l/QZg(wi,é)}
i=1

> The expression in this last line contains what is called an “influence function.” We will come
back to this shortly.
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Asymptotic Distribution of GMM Estimators

» So, dropping the “naught” notation from G and E, for simplicity:

E(0— 6) (0 — 60)
E{(GEG’)laa [N*IZg(wi,é)} [N*Z]V:g(wi,é)] ted (GEG’)l} =

(GEG') ' GEAEG' (GEG') ™!

> Note that if we set = = AL, then this mess reduces as follows:

(ca~'@) “TeATIAA G (ca~'e) R
(ea~'c¢) 'eate (el =

(GA_10’>71
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Asymptotic Distribution of GMM Estimators

> (GEG') ' GEAEG (GEG') ' is always greater than (GAflG’)fl, in the sense that the difference
between the two is a positive definite matrix.

> So an efficient estimate of the variance of 8 is given by

Here)

» What if we want to calculate the variance of an H x 1 dimensional function h (5) H < P?

» We can use the “delta-method,” which gives the variance of h (5) as
dh 1 ~-1_,1-1) [on\’
() (v {8} 7} (%)
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Overidentifying Restrictions

> If L > P, the model is overidentified. We have more equations than unknowns.

» Presumably we could take different subsets of P equations and solve exactly for the P
elements of 6.

> Testing the overidentifying restrictions intuitively is a matter of testing to see if different exactly
identified subsets of moment restrictions have the same solution.

» If the model is correct, then each of these answers should be the same.

» What does this idea tell you about an informal way to see if the overidentifying restrictions are
rejected?
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Hansen’s J-Test
> The following statistic

1 N /A—l 1 N
N<N;g(wi,9)> A (N;g(wi,9)>

converges to a x? statistic with (L — P) degrees of freedom under the null that the
overidentifying restrictions hold.

» This is what is called a portmanteau test. “Wearovercoat”
> |t tests for general misspecification, not any specific sort.

» The GMM J-test therefore need not be very powerful to detect misspecification.
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Why am | torturing you with influence functions?

» Our GMM/SMM weight matrices will be very complicated. Example:

| 4

vV vV.v. v Vv

Moments = M = [Mean Variance RegressionSlopel RegressionSlope2]
Optimal weight matrix = cov(M)™*

How to estimate covariance between a mean and a variance?

How to estimate covariance between slopes from two separate regressions?
Etc.

Especially hard if we need to cluster by firm, etc.

> Influence functions give you a simple way to estimate cov(M)

» Beyond structural estimation, if you know how to use influence functions, you know how to
estimate the standard error for anything!

> Test for serial correlation of the residuals of a nonlinear panel model?

>

Hausman test when the Hausman assumptions are not satisfied.
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General Definition of an Influence Function

» Consider any estimator 9, and suppose there is a function ¢(w;) such that

VN (é - 90) = 0w)/VN +0,(1).  E(@(w:) =0, E(é(wi)é(w:)) exists.

> then ¢(w;) is called the influence function of 4.

> In words, it gives the effect of a single observation on the estimator, up to the o,(1) remainder
term.

» |n different words, an influence function is a function of the data whose mean has the same
asymptotic variance as the estimator.
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Influence Function for a GMM Estimator

» Now reconsider the expression
N —
\/N(O — 00) = — (G050G6)71 GoEo |:]V_1/2 Zg ('wi, 0):|
i=1
and compare it to the general expression for an influence function:

VR (0 00) = 3 o(w) VN + 0, (1)

> The only real difference is the o,(1) term, but somewhere in there we substituted plims in for sample
averages, so the influence function for a GMM estimator must be:

» So the influence function for a GMM estimator must be:

— (G()E()G())71 GoEog (wi, é)

» End of proof by staring. For a real, but logically similar proof, see Newey and McFadden (1994).
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Example
» Recall the definition of an influence function (and dropping the zero subscripts):

- (GEG') ' GEg (w, 0)

» What is the influence function for the estimate of the mean of a random variable z; with mean

w?
g ('wi,é) = Zi—p
=E =1
G =1
10) (wi,é) = —(z;—p

The sample counterpart for observation i is

N
—z; + N1 Zzi
=1
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Example
» Consider a simple linear regression
yi =z +u
» What is the influence function for 57
=z (yi —zif)
2 = o%E (zla)
G = E(xx;)
¢ (wi,0) = —E(wje) (i (y - b))

The sample counterpart for observation i is
-1

— (N Z (x)z;) (x5 - ug)

where the operator - is the Hadamard element-by-element operator.
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Stacking

> What if you estimate the mean p and the OLS coefficient 3, and you want to know the
covariance between these two estimates?

> Option 1: Just estimate them jointly in a big GMM system.
» Option 2: Stack the influence functions and take the inner product.’
> Let éu be the N x 1 sample influence function for p.

> Let ¢3 be the N x k sample influence function for 3.

The reference for this is Erickson and Whited (2002).
Copyright (© Toni M. Whited GMM 24/35



Review of GMM  Influence Functions Plug-in Estimators Clustering Panel AR(1) Coefficients

Stacking

> Let’s define
-1
ta=| (eeaglin)  (-( ) ) |
> Notice | dropped the i subscripts.

» The dimension of this matrix is N x (k + 1).

B

» The sample covariance matrix for ( K ) is then
/ —2
Q5PN
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Sample Matlab Code

% Mean influence function
n = size(z);
meaninflnc = z - mean(z) .*ones(n,1l);

% OLS influence function
b=inv(x'*x) *x'*y;
uhat = y - x*b;

olsinflnc=inv((x'*x)./n)*((x.*uhat(:,ones (size(x,2),1))));

% Big influence function

biginflnc = zeros(n,size(x,2)+1);
biginflnc(:,1) = meaninflnc;
biginflnc(:,2: (size(x,2)+1)) = olsinflnc;

% Covary the influcence functions
avar = biginflnc'*biginflnc./(n"2);

Copyright (© Toni M. Whited GMM
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Two-Step Estimation

» Suppose you are doing a GMM estimator, but you estimate one or more of the parameters
separately via a different procedure, and then plug these estimates into your GMM moment
equations.

> Why? Sometimes this type of exercise reduces the dimensionality of the problem substantially.
» How do you figure out the GMM covariance matrix?

» This is nontrivial because the GMM estimates inherit the sampling variability from the first step.
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Two-Step Estimation
> Let § be a parameter vector of dimension .S that you estimate in a first step via a different
procedure

» Then you plug ¢ into your moment vector to get

g(0,w;,9)
and use this moment vector to estimate 6.
» The variance of the two-step estimator is
(G e’
> You can estimate () by

o %i PO (AT S PP | TP (LA PP

/

in which ¢? is the influence function for 4.

> A clear derivation of this estimator is in Newey and McFadden’s chapter in the 4" volume of

the Handbook of Econometrics.
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Clustered Weight Matrices

> Everything | have taught you thus far is for i.i.d. data. Data are almost never i.i.d. in corporate
finance (or accounting).

> So how do you calculate a weight matrix and get your standard errors right if the data are not
1.3.d?

» We will consider the following case.
» The sample consists of K groups (clusters) of n;, observations each (N =ni +--- + nk)

> Observations are independent across groups but dependent within groups

» K — oo, and ny fixed for each k.
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Clustered Weight Matrices

» We order observations by groups and use double-index notation so that

9(07 'LU) = {9(97 w1,1)7 cee ,g(evwnl,l) | .o | g(e,'LULK), ce 79(0, wnk,K)}
» Under cluster sampling, the observations w,, , might be dependent within a cluster, k.
> I'm going to simplify notation

911 =g(0, w1 1)
g11 =9(0,w11)
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Clustered Weight Matrices

> Let

» Then we can define A as:

> Note that 2 (g,g}) = 0 only if i and j belong to different clusters.

» Define:

» A consistent estimate of A is therefore:
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Sample Matlab code for a balanced panel

Consider a panel with dimensions 7" and N:

k = size(biginflnc,2);

vinx = zeros(k,k);

for qg=1l:capN;
phii = sum(biginflnc ((ggq-1) * (capT)+1l:qq* (capT) ,:));
vinx = vmx + phii'*phii;

end;

vmx = vmx./ ((capN*capT)*2) ;
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Dynamic models require the estimation of dynamics

> A large fraction of dynamic models have driving processes that follow autoregressive
processes.

> One statistic that needs to be matched in many structural estimations is an AR(1) coefficient.
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Consistent estimation of a first-order autoregressive coefficient with
fixed effects

> Suppose you have a variable
Yie, i=1,...,N, t=1,...,T.
that follows a process
Yit = O + PYit—1 T Uit,
in which u;, is possibly correlated with «;.
» OLS will not work.

> You cannot do firm-level deviations from means with a lagged dependent variable.

» Dynamic panel models suffer from weak instrument problems.
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Han and Phillips (2010)

» Han and Phillips (2010) use double differencing to remove the fixed effect.

» Some ugly but easy algebra shows that a consistent estimate of p is given by

S Yy Ay (2Ay;ir + Ayip—1)
2
Zfil Zthz (Ayitﬂ)

where A is the first difference operator.

ﬁ:

» This estimator is clearly obtained from regressing 2Ay;; + Ay;r—1 0N Ayi—1.
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