
Machine Learning for Structural Estimation
Accounting and Economics Society 2020 Summer School

Victor Duarte
UIUC Gies College of

Business

July, 29th 2020

1/60

Goals

• Tools and techniques to make structural estimation

– Easier

– Faster

– Feasible

• Part I: tools and techniques

– High-level overview of machine learning

– Focus on solving and estimating models, not on empirical applications

• Part II: how to use these tools to solve and estimate (discrete-time) dynamic models

2/60

Approach

• Hands-on approach: lots of code!

– Brief overview of concept and/or model description

– Jump to the code that illustrates the idea and/or solves the model

• All code in Python: go to QuantEcon for a great intro

• Code in my GitHub (or just click the embedded links)

• We will run the code in Google Colab

3/60

https://quantecon.org/python-lectures/
https://github.com/vduarte/gsb_summer_course
https://colab.research.google.com/notebooks/intro.ipynb

Machine Learning

• Represent and learn high-dimensional nonlinear functions

– Recognize a face on a picture

– Play the game of Go (Link to the documentary)

• Can machine learning be a useful tool for your research?

– Yes, if you work with functions!

• This lecture:

– Deep Learning

– Policy functions and moment functions

4/60

https://www.nature.com/articles/nature16961
https://www.youtube.com/watch?v=WXuK6gekU1Y

Why should you learn this?

• Machine learning has revolutionized many fields of research

– E.g. image recognition, machine translation, intertemporal optimization

• Positive feedback between software, hardware, and methods

– Better hardware makes adoption of new tech more appealing to researchers

– New technology makes new methods possible

– Larger pool of software developers leads to better software

– Larger pool of customers provides incentives for hardware development

• Economics and finance can benefit from tapping into these resources

5/60

Outline

1. Software and Hardware

2. Stochastic Optimization

3. Neural Networks

4. Intertemporal Optimization

5. Moment Networks

6. Structural Estimation

6/60

Software and Hardware

7/60

Software

• Machine learning software: TensorFlow (Google), PyTorch (Facebook)

– User-friendly, high-performance software suitable for AI applications

– Highly scalable: run same code on laptop and on cloud

– Front end is Python, back end is C++, CUDA or XLA

– Open source

– Support for differentiable programming

– Can compute ∇X Y where X ,Y = anything in your model

– Used in ML to get derivative of network with respect to network parameters

• Does away with trade off between performance and development (Duarte et al., 2020)

8/60

Hardware
• Graphics Processing Units (GPU)

– Developed by NVIDIA to accelerate the rendering of video games (1999)

– Tapping the Supercomputer Under Your Desk: Solving Dynamic Equilibrium Models with
Graphics Processors (JEDC, 2011)

“Suffice it to say that, as the GPU computing technology matures, these details will become
irrelevant for the average user (as they are nowadays for CPUs.”

• Tensor Processing Units (TPU)

9/60

https://cloud.google.com/tpu

Example: Arellano (AER 2008)

• A sovereign default model solved with value iteration

• Reference: QuantEcon

• Experiment: solve it with specialized ML software and hardware and compare it to familiar
programming languages.

• Full TensorFlow code here

10/60

https://python-advanced.quantecon.org/arellano.html
https://colab.research.google.com/github/vduarte/gsb_summer_course/blob/master/sovereign_default_with_tensorflow/arellano2008.ipynb

Results: Performance comparison (Duarte et al., 2020)

Grid size (for bond holdings)

151 351 551 751 951 1151 1351 1551

Hardware Software Average run time of one iteration

Laptop

C++ 37 178 578 1010 1674 2335 3158 4161
Julia 169 725 1826 3370 5310 9188 28741 58269
Matlab 91 318 792 1546 5215 23862 60801 98609
Python/Numpy 133 667 1662 3068 11646 31228 51633 124027
PyTorch 73 371 900 1648 2672 3969 5396 7445
R 430 2237 5379 9917 15993 23726 33416 45791
TensorFlow 20 117 291 533 859 1249 1752 2306

Desktop
with GPU

PyTorch 0.32 1.40 3.63 7.37 12.02 16.14 19.37 20.67
TensorFlow 0.42 0.79 1.25 1.75 2.50 3.44 4.79 6.18

Google Colab
(GPU)

PyTorch 0.48 2.41 5.90 11.18 17.90 26.80 35.75 49.86
TensorFlow 0.74 1.28 1.98 2.95 4.07 5.70 7.97 10.15

Google Colab
(TPU)

TensorFlow 3.27 4.21 5.44 4.59 5.09 5.19 6.53 7.36

Average Bellman error

-4.916 -4.919 -4.922 -4.923 -4.925 -4.923 -4.928 -4.932

This table shows the execution time (in milliseconds) of one iteration of the solution algorithm for the sovereign default model in Arel-
lano (2008).

11/60

Comparing the code: Python/Numpy vs. PyTorch
 1 import numpy as np
 2 logy_grid = np.loadtxt('logy_grid.txt')
 3 Py = np.loadtxt('P.txt')
 4
 5 def main(nB=351, repeats=500):
 6 β, γ, r, θ = .953, 2., 0.017, 0.282
 7 ny = len(logy_grid)
 8 Bgrid = np.linspace(-.45, .45, nB)
 9 ygrid = np.exp(logy_grid)
10 def_y = np.minimum(0.969 * np.mean(ygrid), ygrid)
11 Vd = np.zeros([ny, 1])
12 Vc = np.zeros((ny, nB))
13 V = np.zeros((ny, nB))
14 Q = np.ones((ny, nB)) * .95
15 y = np.reshape(ygrid, [-1, 1, 1])
16 B = np.reshape(Bgrid, [1, -1, 1])
17 Bnext = np.reshape(Bgrid, [1, 1, -1])
18
19 def u(c):
20 return c**(1 - γ) / (1 - γ)
21
22 def iterate(V, Vc, Vd, Q):
23 EV = np.dot(Py, V)
24 EVd = np.dot(Py, Vd)
25 EVc = np.dot(Py, Vc)
26 Vd_target = u(def_y) + β * (θ * EVc[:, nB // 2] + (1 - θ) * EVd[:, 0])
27 Vd_target = np.reshape(Vd_target, [-1, 1])
28 Qnext = np.reshape(Q, [ny, 1, nB])
29 c = np.maximum(y - Qnext * Bnext + B, 1e-14)
30 EV = np.expand_dims(EV, axis=1)
31 m = u(c) + β * EV
32 Vc_target = np.max(m, axis=2)
33 default_states = Vd > Vc
34 default_prob = np.dot(Py, default_states)
35 Q_target = (1 - default_prob) / (1 + r)
36 V_target = np.maximum(Vc, Vd)
37 return V_target, Vc_target, Vd_target, Q_target
38
39
40 for iteration in range(repeats):
41 V, Vc, Vd, Q = iterate(V, Vc, Vd, Q)
42 return V, Vc, Vd, Q

 1 import torch, numpy as np
 2 logy_grid = torch.tensor(np.loadtxt('logy_grid.txt', dtype=np.float32))
 3 Py = torch.tensor(np.loadtxt('P.txt', dtype=np.float32))
 4
 5 def main(nB=351, repeats=500):
 6 β, γ, r, θ = .953, 2., 0.017, 0.282
 7 ny = len(logy_grid)
 8 Bgrid = torch.linspace(-.45, .45, nB)
 9 ygrid = torch.exp(logy_grid)
10 def_y = torch.min(torch.mean(ygrid), ygrid)
11 Vd = torch.zeros([ny, 1])
12 Vc = torch.zeros((ny, nB))
13 V = torch.zeros((ny, nB))
14 Q = torch.ones((ny, nB)) * .95
15 y = torch.reshape(ygrid, [-1, 1, 1])
16 B = torch.reshape(Bgrid, [1, -1, 1])
17 Bnext = torch.reshape(Bgrid, [1, 1, -1])
18
19 def u(c):
20 return c**(1 - γ) / (1 - γ)
21
22 def iterate(V, Vc, Vd, Q):
23 EV = torch.matmul(Py, V)
24 EVd = torch.matmul(Py, Vd)
25 EVc = torch.matmul(Py, Vc)
26 Vd_target = u(def_y) + β * (θ * EVc[:, nB // 2] + (1 - θ) * EVd[:, 0])
27 Vd_target = torch.reshape(Vd_target, [-1, 1])
28 Qnext = torch.reshape(Q, [ny, 1, nB])
29 c = torch.relu(y - Qnext * Bnext + B)
30 EV = torch.reshape(EV, [ny, 1, nB])
31 m = u(c) + β * EV
32 Vc_target = torch.max(m, dim=2, out=None)[0]
33 default_states = (Vd > Vc).float()
34 default_prob = torch.matmul(Py, default_states)
35 Q_target = (1 - default_prob) / (1 + r)
36 V_target = torch.max(Vc, Vd)
37 return V_target, Vc_target, Vd_target, Q_target
38
39 iterate = torch.jit.trace(iterate, (V, Vc, Vd, Q)) # Jit compilation
40 for iteration in range(repeats):
41 V, Vc, Vd, Q = iterate(V, Vc, Vd, Q)
42 return V, Vc, Vd, Q

12/60

Stochastic Optimization

13/60

Gradient Descent with 1 Variable

• Problem:

– Given a function f : R→ R

– Find minx f (x)

– Assuming you have only local information: f ′(x)

14/60

Gradient Descent with 1 Variable

• Start with an arbitrary initial guess, for instance x0 = 4

• ∆y ≈ f′(x0)∆x

• If f′(x0) > 0, then ∆x < 0

• If f′(x0) < 0, then ∆x > 0

• Gradient descent:
∆x ∝ −f′(x0)

∆x = −αf′(x0)

1: Univariate Gradient Descent

x1 = x0 − αf′(x0)

• α is called the learning rate

15/60

Gradient Descent with 1 Variable

2: Univariate Gradient Descent

x1 = x0 − αf′(x0)

x f(x) f’(x)
4 9 6
3.4 5.76 4.8
2.92 3.686 3.84
2.536 2.359 3.072
2.229 1.51 2.458
1.983 0.966 1.966
...

...
...

1 0 0

Code

16/60

https://colab.research.google.com/github/vduarte/gsb_summer_course/blob/master/SGD/GradientDescent.ipynb

Multivariate Gradient Descent

• Problem:

– Given a function f : Rn → R

– Find minx f (x)

– Assuming you have only local information: ∇x f (x)

3: Gradient Descent

x1 = x0 − α∇x f (x)

17/60

Multivariate Gradient Descent

• Problem:

– Given a function f : Rn → R

– Find minx f (x)

– Assuming you have only local information: ∇x f (x)

4: Gradient Descent

x1 = x0 − α∇x f (x)

17/60

Multivariate Gradient Descent

• Justification:

– The gradient points in the direction of steepest ascent.

• Proof:

f (−→x0 +
−→
h ε) ≈ f (x0) + 〈∇f (x0),

−→
h 〉ε

– where
−→
h is a unit vector (||h|| = 1)

– By the Cauchy-Schwarz inequality, the right-hand side of the equation above is maximized for

−→
h =

∇f (x0)

||∇f (x0)||

18/60

Linear Regression (1)

• Given data of pairs {Xi , yi}N
i=0

• What is the best linear function that fits the
data?

• f (x ; Θ) = θ0 + θ1x

Example:

19/60

Linear Regression (2)

• Mean squared loss function:

L(Θ) =
1

2N

N∑
i=0

(f (xi ; Θ)− yi)
2

• Gradient of the loss function:

∇ΘL(Θ) =
1
N

N∑
i=0

(f (xi ; Θ)− yi)∇f (xi ; Θ)

20/60

Linear Regression (3)

• Notice that ∇Θf (xi , ; Θ) = [1 xi]
T

• Applying the gradient descent update we get:

∆θ0 =
1
N

N∑
i=0

(f (xi ; Θ)− yi)

∆θ1 =
1
N

N∑
i=0

(f (xi ; Θ)− yi)xi

Code

21/60

https://colab.research.google.com/github/vduarte/gsb_summer_course/blob/master/SGD/LinearRegression.ipynb

Stochastic Gradient Descent - Large-scale ML

• Training data: {(x1, y1), ..., (xn, yn)}, xi ∈ Rd

• large-scale ML: n and d are large:

– d = number of features

– n = number of samples

L(Θ) =
1
n

n∑
i=0

l(xi , yi ; Θ)

Θ1 = Θ0 − α
1
n

n∑
i=0

∇Θl(xi , yi ; Θ)

• Drawbacks?

22/60

Stochastic Gradient Descent - Large-scale ML

• At iteration k , randomly pick an integer

i(k) ∈ {1, 2, ..., n}

• Perform the update:
Θ1 = Θ0 − α∇Θl(xi(k), yi(k); Θ)

• Does this make sense?

– Yes! (Robbins and Monro (1951) - “A Stochastic Approximation Method”)

23/60

Stochastic Gradient Descent - Large-scale ML

• At iteration k , randomly pick an integer

i(k) ∈ {1, 2, ..., n}

• Perform the update:
Θ1 = Θ0 − α∇Θl(xi(k), yi(k); Θ)

• Does this make sense?

– Yes! (Robbins and Monro (1951) - “A Stochastic Approximation Method”)

23/60

Stochastic Gradient Descent - Large-scale ML

• Visualization

– Gradient Descent

– Stochastic Gradient Descent

24/60

http://fa.bianp.net/teaching/2018/eecs227at/gradient_descent.html
http://fa.bianp.net/teaching/2018/eecs227at/stochastic_gradient.html

Stochastic Gradient Descent - Mini-batch

• Use a mini-batch of stochastic gradients

Θ1 = Θ0 − α
1
|I|
∑
j∈Ik

∇Θl(xj , yj ; Θ)

• Each iteration uses |Ik | stochastic gradients

• Useful in parallel setttings (Multi-core CPUs, GPUs, TPUs)

25/60

Stochastic Gradient Descent - Advanced Optimization

• Momentum

• RMSProp

• Adam

• And many more ...

26/60

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/SGD
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/RMSprop
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam

Neural Networks

27/60

Neural Networks and Options

• Payoff of a call option:

C(S,K) = max{S − K , 0}

28/60

General Combinations of Options (1)

• Payoff of a portfolio of N call options with strike prices {K1,K2, . . . ,KN}:

V (S) =
N∑

i=1

Θi ·max {S − Ki , 0 }

29/60

General Combinations of Options (2)

• Suppose you are certain that the price of a
particular stock, ST , will be in the inverval:

ST ∈ [a, b]

Consider the following strategy:

– Purchase 1 call with an exerise price a

– Sell 2 calls with exerise prices (a + b)/2

– Purchase 1 calls with exerise prices of b
Code

30/60

https://colab.research.google.com/github/vduarte/gsb_summer_course/blob/master/neural_networks/butterfly.ipynb

General Combinations of Options (3)

• Options are extremely flexible securities
that allow market participants to focus on
very particular outcomes of the underlying
securities

• What about more complex payoffs?

Code

31/60

https://colab.research.google.com/github/vduarte/gsb_summer_course/blob/master/neural_networks/Replication%20with%20options.ipynb

General Combinations of Options (3)

• Options are extremely flexible securities
that allow market participants to focus on
very particular outcomes of the underlying
securities

• What about more complex payoffs?

Code

31/60

https://colab.research.google.com/github/vduarte/gsb_summer_course/blob/master/neural_networks/Replication%20with%20options.ipynb

General Combinations of Options (3)

• Options are extremely flexible securities
that allow market participants to focus on
very particular outcomes of the underlying
securities

• What about more complex payoffs?

Code

31/60

https://colab.research.google.com/github/vduarte/gsb_summer_course/blob/master/neural_networks/Replication%20with%20options.ipynb

Option Spanning Theorem
Theorem (Steve Ross (1976))
Any contract can be replicated or spanned by a suitable combination of options.
• Payoff of a portfolio of call options:

V (S) =
N∑

i=1

Θi ·max {S − Ki , 0 }

• A single-layer, feedforward neural network with relu activation that takes as input a single
feature S is:

f (S) =
N∑

i=1

Θi ·max {WiS − Ki , 0 }

• A single-layer, feedforward neural network with relu activation that takes as input k
features x = x1, x2, . . . , xk is:

f (x) =
N∑

i=1

Θi ·max
{

W T
i x− Ki , 0

}

32/60

Option Spanning Theorem
Theorem (Steve Ross (1976))
Any contract can be replicated or spanned by a suitable combination of options.
• Payoff of a portfolio of call options:

V (S) =
N∑

i=1

Θi ·max {S − Ki , 0 }

• A single-layer, feedforward neural network with relu activation that takes as input a single
feature S is:

f (S) =
N∑

i=1

Θi ·max {WiS − Ki , 0 }

• A single-layer, feedforward neural network with relu activation that takes as input k
features x = x1, x2, . . . , xk is:

f (x) =
N∑

i=1

Θi ·max
{

W T
i x− Ki , 0

}

32/60

Option Spanning Theorem
Theorem (Steve Ross (1976))
Any contract can be replicated or spanned by a suitable combination of options.
• Payoff of a portfolio of call options:

V (S) =
N∑

i=1

Θi ·max {S − Ki , 0 }

• A single-layer, feedforward neural network with relu activation that takes as input a single
feature S is:

f (S) =
N∑

i=1

Θi ·max {WiS − Ki , 0 }

• A single-layer, feedforward neural network with relu activation that takes as input k
features x = x1, x2, . . . , xk is:

f (x) =
N∑

i=1

Θi ·max
{

W T
i x− Ki , 0

}
32/60

Feed-forward Neural Network Graph Representation

X1

X2

X3

X4

f (x)

Hidden
layer

Input
layer

Output
layer

Figure: Architecture of a Single Layer Network

• Each blue circle represents a hidden unit, or neuron (or a call option in our analogy)

• The parameters of the network are called weights
33/60

Feed-forward Neural Network Graph Representation

X1

X2

X3

X4

f (x)

Hidden
layer

Input
layer

Hidden
layer

Output
layer

Figure: Architecture of a Deep Neural Network

• Neural networks with multiple hidden layers are called deep neural networks

• Each hidden unit consists of a linear combination of the previous units followed by a nonlinear activation
34/60

Other activation functions

Figure: Activation functions

−3 −2 −1 0 1 2 3

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
ax
{x
,0
}

(a)

−3 −2 −1 0 1 2 3

x

0.2

0.4

0.6

0.8

lo
gi
st
ic(

x)

(b)

−3 −2 −1 0 1 2 3

x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

ta
nh

(x
)

(c)

35/60

Universal Approximation Theorem

Theorem (Cybenko, G. (1989))
A single hidden layer containing a finite number of neurons can approximate continuous
functions on compact subsets of Rn.

36/60

Automatic Differentiation

• To train a neural network, we need the gradient of a loss function w.r.t. all network
parameters

• Autodiff (more specifically backpropagation) computes ∇ΘL(Θ) with the same cost of
computing L(Θ)

• Gradients are exact (up to machine precision)

• grad = tf .gradients(L,Θ)

• Further reference: Backpropagation

37/60

https://colah.github.io/posts/2015-08-Backprop/

A simple example

• Goal: Train a neural network to learn the function

f : [0, 1]→ R, f (x) = x2

• Data (x , x2) with x ∈ [0, 1]

• We will use neural 2-layer network (with random initial weights).

• Minimize the mean squared error loss using stochastic gradient descent

• We will use a batch size of 10000 observations

Code

38/60

https://colab.research.google.com/github/vduarte/gsb_summer_course/blob/master/neural_networks/SimpleNeuralNetwork.ipynb

Another example: Fashion MNIST

Reference: TF tutorial

• 60,000 gray-scale images

• 10 classes:
0. T-shirt/top
1. Trouser
2. Pullover
3. Dress
4. Coat
5. Sandal
6. Shirt
7. Sneaker
8. Bag
9. Ankle boot

• Goal: build a neural network that learns to classify these images

39/60

https://www.tensorflow.org/tutorials/keras/classification

Another example: Fashion MNIST
• Sample images

40/60

Another example: Fashion MNIST
• Each image is a 28× 28 matrix

• Each of the 784(28× 28) pixels is a real number between 0 (white) and 1 (black)

• Each image is vector of 784 features

41/60

Another example: Fashion MNIST
• Each image is a 28× 28 matrix

• Each of the 784(28× 28) pixels is a real number between 0 (white) and 1 (black)

• Each image is vector of 784 features

41/60

Another example: Fashion MNIST

• 10 classes:
0. T-shirt/top
1. Trouser
2. Pullover
3. Dress
4. Coat
5. Sandal
6. Shirt
7. Sneaker
8. Bag
9. Ankle boot

• One-hot encoding:

– a T-shirt is represented by the vector [1, 0, 0, . . . , 0]

– an Ankle boot is represented by the vector [0, 0, 0, . . . , 1]

42/60

Another example: Fashion MNIST

• We will design a neural net that

– takes as inputs a vector of 784 features

– outputs a vector of 10 numbers: the conditional probabilities of the image belonging to each of
the 10 classes.

Code

43/60

https://colab.research.google.com/github/vduarte/gsb_summer_course/blob/master/neural_networks/FashionMnist.ipynb

Intertemporal Optimization

44/60

Direct Policy Search (1)
Duarte, Fonseca, Goodman and Parker (Work in progress)

• Expected lifetime utility is given by:

E

[
T∑

t=0

βtu(Ct (st))

]

• We parametrize policy functions using neural networks

Ct (st) ≡ C(st ; Θt)

• Loss function:

L(Θ) = −E

[
T∑

t=0

βtu(C(st ; Θt))

]

45/60

Direct Policy Search (2)
Duarte, Fonseca, Goodman and Parker (Work in progress)

• Gradient descent update
∆Θ = −α∇ΘL(Θ)

• Plugging in the loss function

∆Θ = −α∇Θ

(
−E

[
T∑

t=0

βtu(C(st ; Θt))

])
• Swapping the order of E and ∇

∆Θ = αE

(
∇Θ

[
T∑

t=0

βtu(C(st ; Θt))

])
• Stochastic gradient descent update

∆Θ ≈ α 1
N

N∑
i=1

∇Θ

(
T∑

t=0

βtu(C(st ; Θt))

)
• This gradient is known as pathwise gradient estimator (Survey)

46/60

https://arxiv.org/pdf/1906.10652v1.pdf

Direct Policy Search (3)
Duarte, Fonseca, Goodman and Parker (Work in progress)

• In code:

47/60

Lifecycle Model Example (Fernandez-Villaverde and Valencia, 2018)

Code
48/60

https://www.nber.org/papers/w24561
https://colab.research.google.com/github/vduarte/gsb_summer_course/blob/master/intertemporal_optimization/direct_policy_search.ipynb

Including parameters as inputs of the neural networks

• Standard solution

– Solve a dynamic programming problem for each set of parameters βi

– policy = policy(states)

• Gradient-Based Structural Estimation (Duarte, 2018)

– Take the parameters as inputs for the policies

– policy = policy(states, β)

– Solve the dynamic programming problem once

Code

49/60

https://colab.research.google.com/github/vduarte/gsb_summer_course/blob/master/intertemporal_optimization/direct_policy_search_with_parameters.ipynb

Moment Networks

50/60

Problem

• General problem:

– vector of data moments ĝ

– vector of model-implied moments g(β) = E [Y |β]

β∗ = argmin||ĝ − g(β)||2W

• We cannot (yet) use gradient-based optimization

– We don’t have a mapping between model parameters and model-implied moments

51/60

Solution (1)

• Claim:

– We can learn the mapping g(β) = E[Y |β] by observing enough data {βi ,Yi}

• Proof:

– Supervised learning (nonlinear regression) solves the problem:

g(β) = argminfE[(Y − f (β))2]

– The conditional expectation also solves the MSE problem:

g(β) = E[Y |β]

52/60

Solution (2)

• g(β) is a function

– Approximated by a neural network

– Alleviates the curse of dimensionality

• g(β) is as good as an analytical formula

1. Evaluating the moments takes a few milliseconds
2. Differentiable
3. Can use the gradient-based methods to estimate the parameters

53/60

Algorithm (1)

1. Draw a (large) sample of model parameters βi (uniformly for now)

2. Simulate the model for each parameter and record the vector of observations Yi

parameters (βi) observations (Yi)
observation γ ψ β L C C2

1 2.1 1.5 .97 1.3 .1 3.9
2 3.2 1.8 .96 1.1 .9 2.8
3 2.7 2.0 .99 1.1 .3 4.3
...

...
...

...
...

...
...

54/60

Algorithm (1)

1. Draw a (large) sample of model parameters βi (uniformly for now)

2. Simulate the model for each parameter and record the vector of observations Yi

parameters (βi) observations (Yi)
observation γ ψ β L C C2

1 2.1 1.5 .97 1.3 .1 3.9
2 3.2 1.8 .96 1.1 .9 2.8
3 2.7 2.0 .99 1.1 .3 4.3
...

...
...

...
...

...
...

54/60

Algorithm (2)

3. Feed the data to machine learning software

4. Result: g(β) =

 E[L|β]
E[C|β]
E[C2|β]


5. Minimize objective function with gradient-based methods

β∗ = argmin||ĝ − g(β)||2W

55/60

Intuition

β1 = 1

tons of computations g(β1) = E[Y |β1] = 2

β2 = 2 tons of computations g(β2) = E[Y |β2] = 4

β3 = 1.5 “probably ′′ g(β3) = E[Y |β3] = 3

56/60

Intuition

β1 = 1 tons of computations

g(β1) = E[Y |β1] = 2

β2 = 2 tons of computations g(β2) = E[Y |β2] = 4

β3 = 1.5 “probably ′′ g(β3) = E[Y |β3] = 3

56/60

Intuition

β1 = 1 tons of computations g(β1) = E[Y |β1] = 2

β2 = 2 tons of computations g(β2) = E[Y |β2] = 4

β3 = 1.5 “probably ′′ g(β3) = E[Y |β3] = 3

56/60

Intuition

β1 = 1 tons of computations g(β1) = E[Y |β1] = 2

β2 = 2 tons of computations g(β2) = E[Y |β2] = 4

β3 = 1.5 “probably ′′ g(β3) = E[Y |β3] = 3

56/60

Intuition

β1 = 1 tons of computations g(β1) = E[Y |β1] = 2

β2 = 2 tons of computations g(β2) = E[Y |β2] = 4

β3 = 1.5

“probably ′′ g(β3) = E[Y |β3] = 3

56/60

Intuition

β1 = 1 tons of computations g(β1) = E[Y |β1] = 2

β2 = 2 tons of computations g(β2) = E[Y |β2] = 4

β3 = 1.5 “probably ′′ g(β3) = E[Y |β3] = 3

56/60

Intuition

β1 = 1 some computations Y |β1 = 2 + ε

β2 = 2 some computations Y |β2 = 4 + ε

β3 = 1.5 “probably ′′ g(β3) = E[Y |β3] = 3

57/60

Moment Networks - Example

• Let g(a) be a function that takes as input the parameter a and returns an expectation:

g(a) = E[cos(a + ε)]

• Suppose we want to find the parameter a s.t. g(a) = 0.1

• Strategy:

– Construct a network to approximate g

– Choose a to minimize (g(a)− 0.1)2

Code

58/60

https://colab.research.google.com/github/vduarte/gsb_summer_course/blob/master/moment_networks/simple_example.ipynb

Structural Estimation

59/60

Using moment networks with intertemporal optimization

• Back to our lifecycle example

• Suppose we want to choose risk aversion γ to match average consumption in the terminal
date (E[C9] = 5.87)

• The solution to this problem is γ = 2

• Strategy:

– Include parameters as inputs to the policy networks (state variables)

– Construct a network to approximate g(γ) = E[C9|γ]

– Minimize the distance (g(γ)− 5.87)2

Code

60/60

https://colab.research.google.com/github/vduarte/gsb_summer_course/blob/master/gradient_based_structural_estimation/direct%20policy%20search%20%2B%20moment%20networks.ipynb

	Tools
	Software and Hardware
	Stochastic Optimization
	Neural Networks
	Intertemporal Optimization
	Moment Networks
	Structural Estimation

