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Why use complicated simulation estimators?

I “Better data and computing facilities, have made sensible things simple.1”

I Simulation estimators make transparent the relationship between economic models and the equations
used to estimate them.

I It seems odd to call computationally intensive econometric techniques “simple,” especially given the
all-too-frequent criticism that they are a “black box.”

I However, there exists a tension between realism and the sorts of models that can produce closed-form
estimating equations.

I Better models that can explain more phenomenon may not lend themselves to closed-form solutions.

1Ariel Pakes, Keynote address delivered at the inaugural International Industrial Organization Conference in Boston, April 2003
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Pseudo-Random Numbers

I Computers cannot produce truly random numbers, and instead produce what are called
“pseudo-random” numbers.

I In general, pseudo-random numbers appear random because they can pass some simple
tests of randomness such as a test for serial correlation.

I A very simple example of a pseudo-random number generator is

Xr = (kXr−1 + c)modm

in which the modulo operator amodb produces the remainder of a/b.

I Actual pseudo-random number generators are more complicated, but they use the same basic
principle.
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Pseudo-Random Numbers
I A series of (pseudo) random i.i.d. uniformly distributed random numbers on (0,m)
ur, ur+1, . . . , rR can be produced as ur = Xr/m.

I Most statistical packages have functions that produce random uniform and random normal
vectors.

I These random numbers are in reality deterministic. The periodicity of the cycle is determined
by the k, c, and m values.

I For well chosen values, the period is typically high (e.g. 109).

I X0 is referred to as the seed or state number, which determines the sequence of random
numbers.

I To use the same sequence of random numbers repeatedly, remember to either save the
random number draws from the first use or re-use the same seed number.
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What if . . . you wanted to estimate a mean?

I Suppose you have an i.i.d. sample, yi, of length N .

I You could use classical method-of-moments by picking an estimate, µ, based on the following
moment condition:

E (y − µ) = 0

I The sample counterpart to this moment condition is

1

N

N∑
i=1

yi − µ = 0

I In this example you have a closed-form expression for the moment condition.

I But you might not . . .
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What if . . . you wanted to estimate a mean?

I A different, very convoluted, way to do the same thing would be to proceed as follows.
I Generate a random vector with a mean, µ. Calculate its average. Call the average from this

simulation µ̂1.

I Do this S times and then calculate.

µ̃ =
1

S

S∑
i=1

µ̂i

I Pick the estimate, µ that sets

µ̃− 1

N

N∑
i=1

yi

as close to zero as possible.
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What if . . . you wanted to estimate a mean?

I This is a simulated method of moments estimator.

I In practice, the estimator is almost the same because you simulate a random vector with a
mean µ by simulating a random vector with a mean of zero and then adding µ.

I Its variance will not be the same as the variance of a GMM estimator because of simulation
error.

I This example is, of course, silly because we don’t need to calculate µ via a simulation. We
know it. We just write it down.

I However, there exist applications in which this is not the case.
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Setup

I Let xi be an i.i.d. data vector, i = 1, . . . , n.

I Let yis (b) be an i.i.d. simulated vector from simulation s, i = 1, . . . , N , and s = 1, . . . , S.

I The simulated data vector, yis (b), depends on a vector of structural parameters, b.

I The goal is to estimate b by matching a set of simulated moments, denoted as h (yis (b)), with
the corresponding set of actual data moments, denoted as h (xi).

I The simulated moments, h (yis (b)) are functions of the parameter vector b because the
moments will differ depending on the choice of b.
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Moment Matching

I The first step is to estimate h (xi) using the actual data.

I The second step is to construct S simulated data sets based on a given parameter vector.

I For each of these data sets, estimate a simulated moment, h (yis (b)).

I Note that you have to make the exact same calculations on the simulated data as you do on the real data.

I SN need not equal n.

I Michaelides and Ng (2000) find that good finite sample performance requires a simulated sample that is
approximately ten times as large as the actual data sample.

Copyright c©Toni M. Whited Simulation Estimators 9/81



Introduction Random Numbers Heuristic Example SMM Indirect Inference Tips Empirical Policy FunctionsIdentification

Now let’s figure out how to match the moments

I Define

gn (b) = n−1
n∑
i=1

[
h (xi)− S−1

S∑
s=1

h (yis (b))

]
.

I The simulated moments estimator of b is then defined as the solution to the minimization of

b̂ = argmin
b
Q(b, n) ≡ gn (b)′ Ŵngn (b) ,

I Ŵn is a positive definite matrix that converges in probability to a deterministic positive definite
matrix W .
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Weight Matrix

I In many applications one can calculate the weight matrix as the inverse of the variance
covariance matrix of h (xi). This weight matrix has an exact analogy with GMM.

I In some cases this type of weight matrix is not feasible; for example, in the multinomial probit
model.

I In such cases you use a two stage procedure.
I In the first stage, minimize Q(b, n) using the identity as the weight matrix.

I Use the resulting estimate, b̂ to construct the weight matrix as the inverse of the variance of√
Nh (yis (b)) . This computation entails that you resimulate your model/data S times.
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Inference
I The simulated moments estimator is asymptotically normal for fixed S!! (This is not the case

for SMLE.)

I The asymptotic distribution of b is given by

√
n
(
b̂− b

) d

−→ N
(
0, avar(b̂)

)
in which

avar(b̂) ≡
(
1 +

1

S

)[
∂gn (b)

∂b
W
∂gn (b)

∂b′

]−1
.

and W is the efficient weight matrix

I Note larger S (more simulated samples)⇒ smaller standard errors
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Inference (numerical derivative)
In previous formula, how to compute Jacobian ∂gn(b)/∂b?

1 Get the SMM estimate, b̂

2 Remember the dimensions:
I Parameters b: k × 1
I Moments h: m× 1
I Jacobian ∂gn(b)/∂b: k ×m

3 Choose step size hi > 0 for each parameter i = 1, ..., k
I Each parameter gets its own step size
I Must be chosen with care! Smaller is better ... except when it’s not
I Good initial guess: 1% of parameter’s estimate

4 Compute two-sided difference. Element {i, j} of ∂gn(b)/∂b is

∂gn,j (b)

∂bi
≈ gn,j(b̂+ hi)− gn,j(b̂− hi)

2hi
,

where “+hi” means perturb parameter i upward by hi
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Test of Overidentifying Restrictions

I As in the case of plain vanilla GMM, one can perform a test of the overidentifying restrictions
of the model

nS

1 + S
Q(b, n)

I This statistic converges in distribution to a χ2 with degrees of freedom equal to the dimension
of gn minus the dimension of b.
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So How Do You Actually DO SMM?

I Choose an optimizer. These usually have two inputs, a set of parameters over which to optimize and a
function to optimize.

I Write a function to be optimized. It will input a parameter vector and output a GMM objective function.
This will involve reading in data moments and a weight matrix and then calculating simulated moments
and then forming a quadratic form.

I The function subroutine will have to call a model solving routine, a model simulating routine, and a
moment calculating routine. The goal in this chain is to eat up parameters and spit back moments.

I When you are done, calculate the gradient matrix and the standard errors.
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Logistics

I How on earth do you minimize something that does not have a closed form?

I For any given value of b, say b0.
I Solve your model.

I Simulate yis (b) and compute h (yis (b)).

I Evaluate the objective function, Q(b, n).

I Choose a new value for the parameters, say v1, for which Q (b0, n) > Q (b1, n).
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Pseudo Code
function SMM (in double parameters[numberParameters],

out double objectiveFunctionValue)

call function solveTheModel( in double parameters[numberParameters],

out double valueFunction[stateSpaceSize],

out int policyFunction[stateSpaceSize])

read weightMatrix[numberMoments, numberMoments]

read dataMoments[numberMoments]

call function simulateFirms( in double valueFunction[stateSpaceSize],

in int policyFunction[stateSpaceSize],

out double simulatedFirms[numberOfFirms, numberOfVariables])

call function calculateMoments(in double simulatedFirms[numberOfFirms,

numberOfVariables],

out double SiimulatedMoments[numberMoments])

momentError = dataMoments − SimulatedMoments

objectiveFunctionValue = momentError * weightMatrix * momentError
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You need to worry about identification

I Identification is often confused with establishing causation

I What does “identification” usually mean in reduced-form work?
I Does x affect y?

I Does y affect x?

I Does some omitted variable z affect both x and y?

I Exogenous variation is very useful for answering this kind of question

I “Identification” in these papers usually means that the researcher has an experimental design
that establishes causality
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Formal statistical definition of identification

I Econometrician defines an objective function over parameters and data

I Goal: Select parameter values that minimize this objective function
I Example: Find slope coefficient that minimize sum of squared errors

I A parameter is (point) identified if there is a unique minimum for the objective function at
parameter’s true value in the population

I In what follows, I’ll use the formal statistical definition of identification
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Example of an unidentified model
I Suppose we want to estimate parameters α and β by MLE

I Parameters α and β appear in the likelihood function only in the form α/β

I ⇒ α/β is identified, but α and β are not separately identified

I Likelihood function is flat at its max:
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Identification by itself is not the ultimate goal

I A parameter can be identified (in the formal statistical sense) without being economically
interesting

I Two examples:
I Regression of endogenous Y on endogenous X

I Regression of endogenous Y on exogenous X
(without a clear and interesting economic mechanism)

I Your ultimate goal: Identify economically interesting parameters
I The parameters may be elasticities defining causal effects

I But they need not be!

I Not all economically interesting parameters are causal elasticities

Copyright c©Toni M. Whited Simulation Estimators 21/81



Introduction Random Numbers Heuristic Example SMM Indirect Inference Tips Empirical Policy FunctionsIdentification

“Identification is not causality, and vice versa”

I (Kahn and Whited 2018), Review of Corporate Finance Studies

I Exogenous variation is:
I Always necessary to identify a causal relation

I Never sufficient for identifying an economically interesting parameter
I You also need an economic model (either mathematical or verbal)

I Only sometimes necessary to identify an economically interesting parameter

I Interesting parameters can sometimes be identified without exogenous variation
I This is often what’s going on in structural corporate finance papers

I Sometimes exogenous variation can be helpful in structural work
I If part of the economic model can be represented as a regression
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Identification and SMM

I The success of the SMM procedure reliefs on picking moments h that can identify the
structural parameters b

I The conditions for global identification of a simulated moments estimator are similar to those
for GMM:
I The expected value of the difference between the simulated and actual moments equals zero iff the

structural parameters are at their true value

I A sufficient condition for identification is a one-to-one mapping between the structural parameters
and a subset of the data moments of the same dimension
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Identification and SMM

I Let hb (yis (b)) be a subvector of h (yis (b)) with the same dimension as b

I Local identification implies that the Jacobian determinant,

det (∂hb (yis (b)) /∂b) ,

is non-zero. I.e., Jacobian has full rank.

I This condition can be interpreted loosely as saying that the moments, h, are informative about
the structural parameters, b

I That is, the sensitivity of moments to parameters is high
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How to choose moments in SMM/GMM

I Best-case scenario: Each moment depends on just 1 model parameter
I “Moment #1 identifies parameter #1, moment #2 identifies parameter #2. . . ”

I But in this case you wouldn’t even need to do SMM/GMM

I More realistic: Every moment depends on every parameter

I All parameters can affect all moments, but the mapping has to be one-to-one and onto

I Do comparative statics to understand how each moment moves with each parameter. Make
sure you understand the economics behind each comparative static.

I Need enough moments, and moments that move in different directions for different
parameters, to obtain identification

I Try targeting empirical policy functions (more details later)
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Identification

I Don’t start estimating until you’re sure the model is identified, or you are in for a world of grief.

I It’s usually impossible to prove formally that your model is identified

I How do you ensure that the model is identified?
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Use Economics (more on this later!)

I PLAY WITH YOUR MODEL UNTIL YOU UNDERSTAND HOW IT WORKS!!!!!!!!!

I Do comparative statics: plot the simulated moments as functions of the parameters.

I You want to find steep, monotonic relationships.

I You want moments that move in different directions for different parameters.
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Examples2

2Riddick and Whited (2009, JF)
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Identification checks
I There are several ways to check whether your model is well identified

I Check #1: Check the standard errors
I Huge standard errors are usually a symptom of poor identification

I The parameters’ standard errors depend on ∂hb (yis (b)) /∂b, the sensitivity of moments to
parameters

I If the sensitivity is low, the derivative will be near zero, which will produce huge standard errors for
the structural parameters

I Check #2: Does the Jacobian matrix ∂hb (yis (b)) /∂b have full rank?
I If not, your model is not locally identified

I This is almost the same as a standard error check, but not quite.
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Identification checks
I Check # 3: Can estimation recover the true parameter values?

I Simulate a “fake” dataset off the model

I Estimate the model, treating the fake data as if it were real data

I Does the estimator recover the true, known parameter values?

I Check #4: Start searching from different initial parameter guesses
I Should reach same final estimate regardless of initial guess

I If not: Coding errors? Stuck in local min? Model not well identified?

I Check #5: Babysit your code
I Some parameters converge faster than other. Keep track of this.

I If one or two parameters are changing drastically during the estimation, you have a problem.
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Local identification diagnostic
I Andrews, Gentzkow and Shapiro (2017) provide a local diagnostic that measures the

sensitivity of θ̂ to the estimated moments, ĝ.

I It is (and it should look familiar):

S = −(G′ΞG)−1G′Ξ.

I This measure is not scale invariant, so they propose the following normalization:

Sl,p

√
Λl,l

V p,p

I I have found this diagnostic to be very sensitive to the step size in the numerical gradient
routine, but it is certainly worth calculating.

I This diagnostic captures both
I the steepness of the gradient
I the precision of the estimation of the moments that identify the parameters

Copyright c©Toni M. Whited Simulation Estimators 31/81



Introduction Random Numbers Heuristic Example SMM Indirect Inference Tips Empirical Policy FunctionsIdentification

Do you need exogenous variation to do SMM?

I Causal elasticities are not always helpful in structural estimation!
(Kahn and Whited 2018)

I Compare SMM estimators of a simple investment model
I Approach #1: Target moments that measure a causal elasticity
I Approach #2: Target moments that measure an endogenous elasticity

I Result: The performance of the two approaches is nearly identical!

I In both cases,
I Multiple moments and multiple parameters interact
I Identification leans on the structure of the model

I Identification always leans on assumptions
I Even in reduced-form papers with exogenous variation
I Those papers often lean on a “verbal” economic model
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Economic Models and Auxiliary Models

I If a model does not provide a closed form likelihood, or the simulated likelihood needs to be
calculated for more than two variables (and two is a stretch), then you can use an auxiliary
model to estimate the model parameters.

I A likelihood is a description of the true data generating process.

I An auxiliary model is an approximation of the true data generating process.
I What if you have a DSGE model of the macroeconomy. The likelihood is impossible to solve for, but

a VAR might describe the data approximately.

I What if you have a model of investment spikes or infrequent price adjustments. The auxiliary model
could be a duration model.
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Auxiliary Models

I In practice, the auxiliary model is itself characterized by a set of parameters.

I These parameters can be estimated using either the observed data or the simulated data.

I Indirect inference chooses the parameters of the underlying economic model so that these
two sets of estimates of the parameters of the auxiliary model are as close as possible.
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Auxiliary Models

I You should be able to match exactly if you have as many parameters in the auxiliary model as
you do in the economic model.

I But the number of auxiliary parameters can be greater than the number of economic
parameters.

I To the extent that the parameters of the auxiliary model are functions of moments of the data,
indirect inference can be thought of as a superset of SMM.

I It falls under the category of a simulated minimum distance (SMD) estimator.
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Estimation: Minimum Distance Style
I Notation:

I xN is a data matrix of length N

I xsN is a simulated data matrix of length N from simulation s, s = 1, . . . , S.

I θ a vector of auxiliary model parameters estimated with real data.

I θs a vector of auxiliary model parameters estimated with simulated data.

I b is the vector of parameters from the economic model.

I Without loss of generality, the parameters of the auxiliary model can be represented as the
solution to the maximization of a criterion function

θN = argmax
θ
JN (xN , θ) ,

I Examples?
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Estimation: Minimum Distance Style

I Construct S simulated data sets based on a given parameter vector, b.

I For each of these data sets, estimate θs by maximizing an analogous criterion function

θsN (b) = argmax
θ
JN (xsN , θ

s (b)) ,

I Note that the θsN (b), as explicit functions of the structural parameters, b.

I The inverse of this function is what Gourieroux and Monfort call a “binding” function.
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Estimation: Minimum Distance Style

I The indirect estimator of b is then defined as the solution to the minimization of

b̂ = argmin
b

[
θN −

1

S

S∑
h=1

θsN (b)

]′
ŴN

[
θN −

1

S

S∑
h=1

θsN (b)

]
≡ argmin

b
Ĝ′NŴN ĜN

I ŴN is a positive definite matrix that converges in probability to a deterministic positive definite
matrix W .

I As in GMM the optimal weight matrix is the inverse of the covariance matrix of θ.

I The main difference between SMM and this flavor of indirect inference is that the former uses
moments and the latter uses functions of moments.
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Inference: Minimum Distance Style

I The indirect estimator is asymptotically normal for fixed S. Define J ≡ plimN→∞ (JN ) . Then

√
N
(
b̂− b

)
d−→ N

(
0,avar(b̂)

)
where

avar(b̂) ≡
(
1 +

1

S

)[
∂J

∂b∂θ′

(
∂J

∂θ

∂J ′

∂θ

)−1
∂J

∂θ∂b′

]−1
.

I The technique provides a test of the overidentifying restrictions of the model, with

NS

1 + S
Ĝ′NŴN ĜN

converging in distribution to a χ2, with degrees of freedom equal to the dimension of θ minus
the dimension of b.
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Miscellaneous Pieces of Advice from the Trenches

I Heterogeneity

I The black box problem

I Choosing the weight matrix

I Computation
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Firm Heterogeneity

I It is really hard to address the issue of firm heterogeneity using SMM.

I This is perhaps the biggest drawback of this technique.

I The models we simulate are usually of a single firm or at best an industry equilibrium with very
limited heterogeneity.

I So you have to suck as much heterogeneity out of your data as you can before you can have
any hope of fitting the model to the data.
I Firm and time fixed effects

I You can also do sample splits. This used to be computationally infeasible, but . . .
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Sample Splits3

3DeAngelo, DeAngelo and Whited (2011)
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Do Not Construct a Black Box

I More parameters 6= a better model!!!!!!

I Different features of the data should change when underlying parameters change.

I This is less likely to happen in a model with many extraneous parameters.

I If the author cannot clearly explain which features of the data identify each parameter, the
paper / job market candidate is a “reject”

I Structural estimation should not be a black box.

Copyright c©Toni M. Whited Simulation Estimators 43/81



Introduction Random Numbers Heuristic Example SMM Indirect Inference Tips Empirical Policy Functions

How Not Construct a Black Box
I Start simple!!!

I Make sure the simple model is right.

I Figure out where the simple model succeeds and fails.

I Add a feature that will help you answer the question you want to answer.

I Make sure the slightly more complicated model is right.

I Figure out where the more complicated model succeeds and fails.

I Converge.
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The question comes first — Not the model

I Before going structural, convince yourself that a structural approach is absolutely necessary.

I Are there data limitations?

I Are you interested in something besides a causal elasticity?
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Use the right weighting matrix

I Many structural estimation papers use odd weighting matrices.

I Identity weight matrix
I This choice mechanically puts more weight on moments that are larger in absolute value.

I Not an economically sensible choice.

I Bazdresch, Kahn and Whited (2018) note poor finite sample performance.
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Use the right weighting matrix

I Inverse of the squared moments on the diagonal
I This choice minimizes the percentage differences in the moments.

I This choice mechanically puts more weight on moments that are smaller in absolute value.

I Not an economically sensible choice.
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Use the right weighting matrix

I Inverse moment variance along the diagonal
I This choice puts the least weight on moments that are estimated with the least precision.

I A statistically more or less sensible choice.

I The old version of Bazdresch et al. (2018) (before the referees got to it) note poor finite sample
performance.
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Use the right weighting matrix

I Inverse clustered moment covariance matrix
I This choice minimizes overall model error.

I Takes into account moment covariances.

I Bazdresch et al. (2018) note good finite sample performance.

I If at all possible, do this.
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Do not treat the process of estimating the model mechanically!

I First, try to calibrate the model by hand.

I You will learn about which parts of the model are useful for understanding which parts of the
data.

I You will learn a lot about the economics of the model.

I You will also learn a lot about identification.

I You will end up with a good starting value for your estimation.

I Only after you have done this should you start your estimation running.
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You are going to have to minimize an objective function:

I You can’t use a gradient based method unless you have a closed-form GMM or MLE problem

I Multi-start algorithms, combined with Nelder Meade work very poorly, except. . ..

I Tiktak algorithm (Arnoud, Guvenen and Kleineberg 2017).

I Use the simulated annealing (SA), particle swarm (PS), or differential evolution algorithm (DE)
to avoid local minima

I DE and PS can be parallelized, but I have found that they can converge way too fast or not at
all, depending on technical parameter settings. In technical terms, they’re downright squirrelly.

I Use the same seed for the random-number generator each time you simulate data off the
model. Do not mess up this step.
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Software

I Do not use Matlab, R, Python, Octave, Gauss, or any other interpreted language.

I They are too slow!

I To estimate a model, you usually have to solve it ∼50,000 times.

I Use a compiled language: C, C++, Fortran, JIT compiled Python

I I hear Julia can be fast, but I have never tried, and I have heard that it is finicky.

I Learn how to exploit multiple processors, a graphics card, a supercomputer, . . ..
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Remember that you are actually doing estimation

I Get the standard errors right.

I The actual data are usually not i.i.d.

I When estimating the covariance matrix for empirical moments, you must take into account
I Heteroskedasticity

I Time-series autocorrelation

I Cross-sectional correlation

I Serial correlation, including correlation across moments.

I You know what to do!
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WHY GO STRUCTURAL? BECAUSE YOU GET TO DO IT ALL!

I Write down models, solve models numerically, gather data, do complicated econometrics, . . .

I Going structural may be right for you if . . .
I . . .not much on your calendar for next few years

I . . .emotionally robust
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Dynamic models need empirical benchmarks!

I What features of the data should one use to estimate and evaluate dynamic models?

I What are the finite sample properties of the simulation estimators used for this purpose?

I How do you test the external validity of dynamic models?
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These questions are interesting because dynamic models are
inherently testable.

I Dynamic models provide an abundance of quantitative time series and cross sectional
predictions.

I This richness allows researchers to discipline dynamic models more than static models.
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The usual estimation method relies on arbitrary choices.

I Choose several interesting moments.

I Pick parameters to get model implied moments as close as possible to data moments.

I No guidance as to the choice of moments.
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Our solution is to use data features that are common across models.

I The solution to any dynamic model is characterized by

Value function: given the current state,
what is the value of the firm?

Policy function: given the current state,
what are its optimal decisions?

I We use the empirical policy function (EPF) as a benchmark for estimation and testing.
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Why are EPFs better than moments?

I For any two models that describe the same variables, . . .

I Using EPFs to estimate parameters provides a uniform method for comparing models.

I The moments come from simulating data from the policy functions, . . .

I So why not use the policy functions directly.
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EPF-based estimation is better in finite samples.

I Monte Carlos show simulation estimators have low bias and mean squared error.

I EPF-based estimation has greater power to detect model misspecification.
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To make our setting concrete, we consider a simple dynamic capital
structure model...

I The firm maximizes distributions to shareholders.

I The firm chooses next period leverage and investment.
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The firm uses capital to produce revenue.

constant returns profit function z = zK/K

stochastic productivity shock ln(z′) = (1− ρ)µ+ ρ ln(z) + σε′, ε′ ∼ N (0, 1)

investment i = K′/K − (1− δ)

investment adjustment costs γi2
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The firm can issue risk-free, secured debt and hold cash.

leverage/cash p ≶ 0

collateral constraint p′ ≤ ξ

taxes τ

Copyright c©Toni M. Whited Simulation Estimators 63/81



Introduction Random Numbers Heuristic Example SMM Indirect Inference Tips Empirical Policy Functions

The firm’s sources and uses of funds identity defines payments to
equity.

I sources minus uses of funds

e(p, p′, i, z) = z(1− τ)− i− γi2

2
− p(1 + r(1− τ)) + p′(1− δ + i)

I If e > 0, distributions

I If e < 0, proportional cost of equity issuance, λ
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The Bellman equation is standard

π(p, z) = max
p′,i

{
e(p, p′, i, z) + βEπ(p′, z′)(1− δ + i)

}
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The model has a solution characterized by a value and a policy
function.

Equity value = V (profitability, leverage)

Investment and next period leverage = G(profitability, leverage)

�
�
�
�
�
�
���

control variables �
�
�
�
�
�
���

state variables
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Policy functions

Net debt
Investment
Net distributions

−0.4

−0.2

0

0.2

0.4

0.6

Profitability shock
0 0.2 0.4 0.6

Copyright c©Toni M. Whited Simulation Estimators 67/81



Introduction Random Numbers Heuristic Example SMM Indirect Inference Tips Empirical Policy Functions

Estimation is necessary to make the parameter values empirically
relevant.

I SMM estimation.

I EPF-based estimation.
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Identification of SMM requires arbitrary choices.

I You need to pick moments that vary with the underlying parameters.

I You should not cherry-pick moments.

I No guidance as to the choice of moments.
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Identification of EPF-based estimation requires few arbitrary choices.

I Use any semiparametric regression technique to estimate the policy functions.

I Polynomial estimator.

I Capture level, slope, variability, curvature
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We estimate the model using standard data.

I Compustat data from 1962 to 2012

I The model describes homogeneous firms.

I Remove time and firm fixed effects.

I But levels of variables are important.

I Add back sample mean.
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Intuitive methods for estimating the parameters:

Model Step Data Step
SMM and EPF Draw from profit shock Collect data

Compute optimal policies Screen data
Repeat Remove fixed effects

SMM Compute moments ⇐⇒ Compute moments
⇓

parameters

EPF Estimate policy functions ⇐⇒ Estimate policy functions
⇓

parameters
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The estimates are economically different.
Panel A: Parameters
Parameter Moments-based EPF-based
µ −2.203 −2.172

(0.014) (0.002)
ρ 0.769 0.619

(0.013) (0.048)
σ 0.405 0.561

(0.012) (0.023)
δ 0.066 0.067

(0.001) (0.001)
γ 11.016 12.777

(0.316) (0.145)
ξ 0.444 0.493

(0.022) (1.088)
λ 0.236 0.059

(0.021) (0.945)
Overidentifying χ2 p-value (d.f.) 0.000 (1) 0.000 (11)
Out-of-sample χ2 p-value (d.f.) 0.000 (18) 0.000 (8)
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The moments estimation does better at matching moments than the
EPF estimation.

Panel B: Moments
Data Moments-based EPF-based

Simulated t-statistic Simulated t-statistic

Mean leverage 0.154 0.156 −6.187 0.215 −3.532
Variance leverage 0.021 0.020 18.722 0.045 −4.772
Mean investment 0.082 0.073 12.756 0.082 0.048
Variance investment 0.003 0.000 40.639 0.000 39.176
Mean distributions 0.006 0.015 −22.771 0.005 −0.212
Variance distributions 0.006 0.001 76.988 0.002 24.983
Mean profits 0.132 0.131 0.236 0.142 −9.729
Variance profits 0.007 0.006 12.321 0.010 −23.840
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There are two interesting test stats in that table!

I The first is a standard t-stat on the moment conditions.

I To calculate the t-stats, you need to calculate the moment covariance matrix.

var(g(vit, θ)) =
1

nT

(
1 +

1

S

)
(I −G(G′WG)−1G′W )Ω̂(I −G(G′WG)−1G′W ).
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We also develop an out-of-sample moment condition test.
I Suppose we have a vector of benchmarks, m∗(·), that are not used to estimate the parameter θ. We

want to test the null hypothesis that

g∗ (vit, θ) = E

(
m∗ (vit)− S−1

S∑
s=1

m∗ (vsit (θ))

)
= 0.

I We need the variance of these moment conditions, which are given by:

avar(g∗ (vit, θ)) = E
[
φ∗gφ

∗
g
′]
,

where φ∗g is the influence function for g∗.

I The influence function for g∗ (vit, θ) is given by:

φ∗g = φ∗m −

(
S−1

S∑
s=1

(∂m∗ (vsit (θ)) /∂θ)

)
φθ.
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Monte Carlo Design

1 Solve model at parameters estimates from polynomial EPF.

2 Simulate 1000 data sets
I 20 years of data for 3,750 firms.

3 Estimate four parameters using EPF and SMM estimation:
I depreciation rate δ.
I equity issuance cost λ.
I collateral value of capital ξ.
I adjustment costs ψ.
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Simulation estimators recover parameters very well.
Moments-based EPF-based

Parameter Identity Clustered Identity Clustered
δ (depreciation rate)

Average % bias 0.123 -0.006 -0.021 -0.001
RMSE % 0.608 0.047 0.059 0.010

Pr(t) 0.605 0.367 0.309 0.348
λ (equity issuance cost)

Average % bias 0.598 -0.165 1.793 -0.047
RMSE % 3.141 1.477 2.662 0.875

Pr(t) 0.001 0.002 0.001 0.003
ξ (collateral parameter)

Average % bias -0.189 -0.299 -0.308 0.035
RMSE % 0.790 0.659 1.997 0.110

Pr(t) 0.117 0.277 0.359 0.019
γ (investment adjustment cost)

Average % bias -0.239 0.027 0.052 0.007
RMSE % 1.273 0.106 0.127 0.022

Pr(t) 0.313 0.135 0.115 0.100
Overidentification test rejection rate 0.558 0.048 0.825 0.083

External validity test rejection rate 0.985 0.843 0.668 0.079
Moment t-statistics:

maximum rejection rate 0.317 0.022 0.354 0.024
median rejection rate 0.132 0.012 0.056 0.010

minimum rejection rate 0.000 0.005 0.000 0.005
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Misspecification
I Estimate the same model, but introduce a misspecification.

Data model: Cost of debt issuance.

Estimation model: No cost of debt issuance.

I Simulate 1000 data sets that follow the data model.

I Repeat Monte Carlo exercise using the estimation model.

I Count how many times model is rejected by standard χ2 test.
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EPF-based estimation test statistic power
Panel A: Overidentification test

Panel B: Out-of-sample test
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Moment-based estimation test statistic power
Panel A: Overidentification test

Panel B: Out-of-sample test
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