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WELCOME!

» Why solve dynamic models?
» Theory vs practice

» Resources



ROADMAP

The basic dynamic programming setup
A firm's dynamic price adjustment problem
Value function iteration

Discretization

Simulation

Fun with MATLAB!



A DYNAMIC OPTIMIZATION PROBLEM
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» Decisionmaker maximizes an expected present discounted value
with discount rate 0 < 8 < 1 by choosing a contingent plan.

» Current payoff R(-) in t depends on potentially vector-valued:

> State s;
P> Stationary Markov shock x¢
» Policy siy1, i.e., future state

» Policy choice is subject to constraints I'(+), which usually embed a
“today vs tomorrow” dynamic tradeoff

Note: Lots of stuff fits into this structure. Household savings for welfare
maximization, firm investment, financing, etc...



THE KEY RECURSIVE INSIGHT OF
DyYyNAMIC PROGRAMMING

Sequence Formulation
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Stationary Bellman Equation, Fixed Point, or Recursive Formulation

V(s,z) = S/g?fz) [R(s,z,s") + BB,V (s, 2")]

V=TV), T(f)=max[R+ FE(f)]



THE GOAL

Starting with a Bellman equation formulation

Vs, x) = S,g%z@(x) [R(s,z, ") + BB,V (s, 2")]

the goal is to introduce computational methods allowing us to

> solve the model for the optimal policy function s'(s,x), which
usually involves solving for the value function V (s, ), and

» simulate the model by drawing exogenous Markov shock
processes x1, T2, .... which lead to endogenous sequences of
states s1, 59, .....

Note: The goals aren’t picked randomly. Structural estimation em-
beds them within each evaluation of an objective function.
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A CONCRETE EXAMPLE

A firm facing downward-sloping demand and marginal cost shocks
chooses prices to maximize the expected PDV of its payouts, which
are variable profits net of price adjustment costs.

V(p-1,m) = max [IL(p,m) — AC(p-1,p) + BEpnV (p, m)]

logm’ = plogm +on', 71 ~ N(0,1)

(p,m) = (p—m)p~=, AC(p-1,p) = g

0<fB<l, O0<p<l, >0, e6>1, ¢>0

(p— p—1)2

Stepping Back

» Why is this a dynamic problem rather than a series of
identically structured static monopolistic pricing decisions?

» What do we expect intuitively from the shape and slopes of
the solutions p(p_1,m) and V(p_1,m)?
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SOLVING THE MODEL WITH VFI

Solving the Bellman equation

Vs, x) = Slg%gm) [R(s,x, ') + 5E$/‘wV(5’7x/)]

is equivalent to finding a fixed point of the operator T
= V=T(), T(f)=max[R+E(f).

Under regularity conditions, a famous contraction mapping theorem guar-
antees that value function iteration (VFI) will converge, i.e., repeatedly
iterating on 7 (-) converges

Vi, Vor=TVw), - Vo) =TVm=1)) - 2nseeV
Some Notes

» |I'm skipping over formalism. What regularity conditions? What is
convergence in a function space? Does V exist uniquely? Why
exactly are the sequence and Bellman formulations equivalent?...

» In each VFI step you compute optimal policies s’(s,z). So both
values V (s, z) and optimal policies are obtained, as desired.
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A BT MORE DETAIL ON VFI

Start with R(s,z,s’), F(z'|x), T'(s,z), and 0 < § < 1, as well as a guess
V(1) and a specified solution tolerance e,y > 0. For each step of VFI
n=12,..,do

1. Compute V(,41) by solving for optimal s’ at each (s,z) via

‘/(n+1)(sa (E) = s'ér%?;(w) [R(S,l’, S/) + ﬂEac’m‘/(n)(S/,I/)] :

2. Compute the error

HV(n+1) - V(n)” = Hsla;CX |V(n+1)(8a Z‘) - V(n)(svx)‘

3. If HV(nJrl) - V(n)” < €01, &Xit. If ||V(n+1) — V(n)H > Etol, 8O tO
next iteration by jumping back to Step ?? with n =n + 1.
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SOME OF THIS STUFF IS TRICKY

Solving the general version of the Bellman equation

V(s,z) = S/g%fz) [R(s,z,s") + BB,V (s, a")]

involves some stuff that can be computationally tricky:

» Functions of continuous inputs like V() take some care to store,
requiring interpolation methods, attention to smoothness, etc...

> Expectations of continuous Markov chains 2’|z involve numerical
integration or quadrature which can be tricky or time-consuming.

» Optimization over continuous choices s’ requires application of
potentially finicky and time-consuming numerical algorithms.

But if we discretize everything by putting s, x, and s’ on grids, then

» functions are easy vectors, expectations are easy weighted sums,
and optimization is just picking the biggest number from a vector.
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DISCRETIZING MARKOV CHAINS

We desire to work with methods converting from a general continuous,
stationary Markov chain described by the distribution F'(z'|x) to

» Agrid {Z1,...,Zn, } of N, points in which discretized x lives.

» A transition matrix II* with size N, x N, with entries

Iy ; = mj; = P2’ = Zj|z = 7;)

Once we do this, note that integration collapses to a simple weighted sum:

Ep [g(c)]2] = / o(")AF (&' |z) = / o(") (') da

—

N,
Ene [g(a)lo = 23] ~ Y 789(z;)
j=1
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TAUCHEN (1986)

One classic simple method for discretizing the stationary AR(1) processes
¥ =pr+on, n~N01), 0<p<l, oc>0
comes from a famous paper Tauchen (1986).

1. Choose an (odd) value for N, and a multiple M, of standard

deviations 0, = —Z= which you want the grid to span.

- 7=
2. Linearly space the grids points Z; with gaps A > 0
{-Myo,—Mzor + A, .., — A0, A .., Myo, — A, Mo, }

3. Compute the entries of II” by integrating under the error term, i.e.,
A A
IIj; =P(a’ = 7|z = 2;) = H (ffj + 2;@,02) —H (fj - 2;pfi,a2>

where H(-; uu,0?) is the N(u,0?) CDF. Endpoints absorb the tails.

Note: Within Tauchen's method, you can add constants, make this a
lognormal process, apply more complicated grids, do this with vector pro-

cesses, etc... Also, many other fancier non-Tauchen methods now exist.
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DISCRETIZED BELLMAN EQUATION

V(s,z) = max [R(s,z,5)+ BE, V(s z)].
s’€l(s,x)
Discretize the Markov chain 2’|z with N, points.
Choose a grid of Ny points on which s lives {51, ..., Sn, }.

The discretized Bellman equation for each (5;, z;) is

N:v
V(8i,7;) = | max R(8;,%;,5") +52W§kV(S/755k)
s" € I'(5;,75), k=1

s’ e {51,...,51\[5}

Collecting across all (4, j), we have the convenient vectorized form

Vv = RHS
—~ ——

NN, X 1vector row max of specially constructed NN, X Nsmatrix
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SIMULATING YOUR MODEL

After model solution, we often want to examine simulated data.
> Simulate the exogenous Markov chain {z;}}_, for a large 7.
» Using optimal policies s'(-), compute the implied states {s;}~ ;.

» Process the data {s;, z;}7_; in whichever manner is needed for
your question of interest.

Some Notes
In practice, when simulating for application of structural estimation tech-
niques you may need to:

» Compare U(0, 1) shocks with thresholds implied by II*.

> Simulate data with a panel structure, i.e., (s;, ;) for firms
i=1,...,Nandt=1,...,T.

» Be careful with initial conditions, which can be overly influential for
persistent processes, by discarding “burn-in" periods.

» Be careful to set seeds for replicability of random draws in the
simulation of exogenous processes.
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