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Welcome!

I Why solve dynamic models?

I Theory vs practice

I Resources
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Roadmap

The basic dynamic programming setup

A firm’s dynamic price adjustment problem

Value function iteration

Discretization

Simulation

Fun with MATLAB!
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A Dynamic Optimization Problem

max
{st+k+1}∞k=0

Et
∞∑
k=0

βkR(st+k, xt+k, st+k+1)

s.t. st+k+1 ∈ Γ(st+k, xt+k) ∀k
xt+k|xt+k−1, .... ∼ F (xt+k|xt+k−1)

I Decisionmaker maximizes an expected present discounted value
with discount rate 0 < β < 1 by choosing a contingent plan.

I Current payoff R(·) in t depends on potentially vector-valued:

I State st
I Stationary Markov shock xt
I Policy st+1, i.e., future state

I Policy choice is subject to constraints Γ(·), which usually embed a
“today vs tomorrow” dynamic tradeoff

Note: Lots of stuff fits into this structure. Household savings for welfare
maximization, firm investment, financing, etc...
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The Key Recursive Insight of

Dynamic Programming
Sequence Formulation

max
{st+k+1}∞k=0

Et

∞∑
k=0

βkR(st+k, xt+k, st+k+1) =

max
{st+k+1}∞k=0

R(st, xt, st+1) + βEt

R(st+1, xt+1, st+2) + βEt+1R(st+2, xt+2, st+3) + ...︸ ︷︷ ︸
V (st+1,xt+1)


︸ ︷︷ ︸

V (st,xt)

Stationary Bellman Equation, Fixed Point, or Recursive Formulation

V (s, x) = max
s′∈Γ(s,x)

[
R(s, x, s′) + βEx′|xV (s′, x′)

]
V = T (V ), T (f) = max[R+ βE(f)]
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The Goal

Starting with a Bellman equation formulation

V (s, x) = max
s′∈Γ(s,x)

[
R(s, x, s′) + βEx′|xV (s′, x′)

]
,

the goal is to introduce computational methods allowing us to

I solve the model for the optimal policy function s′(s, x), which
usually involves solving for the value function V (s, x), and

I simulate the model by drawing exogenous Markov shock
processes x1, x2, .... which lead to endogenous sequences of
states s1, s2, .....

Note: The goals aren’t picked randomly. Structural estimation em-
beds them within each evaluation of an objective function.
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A Concrete Example
A firm facing downward-sloping demand and marginal cost shocks
chooses prices to maximize the expected PDV of its payouts, which
are variable profits net of price adjustment costs.

V (p−1,m) = max
p

[
Π(p,m)−AC(p−1, p) + βEm′|mV (p,m′)

]
logm′ = ρ logm+ ση′, η′ ∼ N(0, 1)

Π(p,m) = (p−m)p−ε, AC(p−1, p) =
c

2
(p− p−1)2

0 < β < 1, 0 < ρ < 1, σ > 0, ε > 1, c > 0

Stepping Back

I Why is this a dynamic problem rather than a series of
identically structured static monopolistic pricing decisions?

I What do we expect intuitively from the shape and slopes of
the solutions p(p−1,m) and V (p−1,m)?
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Solving the Model with VFI
Solving the Bellman equation

V (s, x) = max
s′∈Γ(s,x)

[
R(s, x, s′) + βEx′|xV (s′, x′)

]
is equivalent to finding a fixed point of the operator T

⇐⇒ V = T (V ), T (f) = max [R+ E(f)] .

Under regularity conditions, a famous contraction mapping theorem guar-
antees that value function iteration (VFI) will converge, i.e., repeatedly
iterating on T (·) converges

V(1), V(2) = T (V(1)), ..., V(n) = T (V(n−1)), ...→n→∞ V

Some Notes

I I’m skipping over formalism. What regularity conditions? What is
convergence in a function space? Does V exist uniquely? Why
exactly are the sequence and Bellman formulations equivalent?...

I In each VFI step you compute optimal policies s′(s, x). So both
values V (s, x) and optimal policies are obtained, as desired.
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A Bit More Detail on VFI

Start with R(s, x, s′), F (x′|x), Γ(s, x), and 0 < β < 1, as well as a guess
V(1) and a specified solution tolerance εtol > 0. For each step of VFI
n = 1, 2, ..., do

1. Compute V(n+1) by solving for optimal s′ at each (s, x) via

V(n+1)(s, x) = max
s′∈Γ(s,x)

[
R(s, x, s′) + βEx′|xV(n)(s

′, x′)
]
.

2. Compute the error

||V(n+1) − V(n)|| = max
s,x
|V(n+1)(s, x)− V(n)(s, x)|

3. If ||V(n+1) − V(n)|| < εtol, exit. If ||V(n+1) − V(n)|| ≥ εtol, go to
next iteration by jumping back to Step ?? with n = n+ 1.
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Some of This Stuff is Tricky
Solving the general version of the Bellman equation

V (s, x) = max
s′∈Γ(s,x)

[
R(s, x, s′) + βEx′|xV (s′, x′)

]
involves some stuff that can be computationally tricky:

I Functions of continuous inputs like V (·) take some care to store,
requiring interpolation methods, attention to smoothness, etc...

I Expectations of continuous Markov chains x′|x involve numerical
integration or quadrature which can be tricky or time-consuming.

I Optimization over continuous choices s′ requires application of
potentially finicky and time-consuming numerical algorithms.

But if we discretize everything by putting s, x, and s′ on grids, then

I functions are easy vectors, expectations are easy weighted sums,
and optimization is just picking the biggest number from a vector.
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Discretizing Markov Chains

We desire to work with methods converting from a general continuous,
stationary Markov chain described by the distribution F (x′|x) to

I A grid {x̄1, ..., x̄Nx} of Nx points in which discretized x lives.

I A transition matrix Πx with size Nx ×Nx with entries

Πx
i,j = πxij = P(x′ = x̄j |x = x̄i)

Once we do this, note that integration collapses to a simple weighted sum:

EF [g(x′)|x] =

∫
g(x′)dF (x′|x) =

∫
g(x′)f(x′|x)dx

⇐⇒

EΠx [g(x′)|x = x̄i] ≈
Nx∑
j=1

πxijg(x̄j)
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Tauchen (1986)
One classic simple method for discretizing the stationary AR(1) processes

x′ = ρx+ ση′, η′ ∼ N(0, 1), 0 < ρ < 1, σ > 0

comes from a famous paper Tauchen (1986).

1. Choose an (odd) value for Nx and a multiple Mx of standard
deviations σx = σ√

1−ρ2
which you want the grid to span.

2. Linearly space the grids points x̄i with gaps ∆ > 0

{−Mxσx,−Mxσx + ∆, ...,−∆, 0,∆, ...,Mxσx −∆,Mxσx}

3. Compute the entries of Πx by integrating under the error term, i.e.,

Πx
ij = P(x′ = x̄j |x = x̄i) = H

(
x̄j +

∆

2
; ρx̄i, σ

2

)
−H

(
x̄j −

∆

2
; ρx̄i, σ

2

)
where H(·;µ, σ2) is the N(µ, σ2) CDF. Endpoints absorb the tails.

Note: Within Tauchen’s method, you can add constants, make this a
lognormal process, apply more complicated grids, do this with vector pro-
cesses, etc... Also, many other fancier non-Tauchen methods now exist.
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Discretized Bellman Equation

V (s, x) = max
s′∈Γ(s,x)

[
R(s, x, s′) + βEx′|xV (s′, x′)

]
.

I Discretize the Markov chain x′|x with Nx points.

I Choose a grid of Ns points on which s lives {s̄1, ..., s̄Ns
}.

I The discretized Bellman equation for each (s̄i, x̄j) is

V (s̄i, x̄j) = max
s′ ∈ Γ(s̄i, x̄j),
s′ ∈ {s̄1, ..., s̄Ns

}

[
R(s̄i, x̄j , s

′) + β

Nx∑
k=1

πxj,kV (s′, x̄k)

]
.

I Collecting across all (i, j), we have the convenient vectorized form

V︸︷︷︸
NsNx×1vector

= RHS︸ ︷︷ ︸
row max of specially constructed NsNx×Nsmatrix
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Simulating Your Model
After model solution, we often want to examine simulated data.

I Simulate the exogenous Markov chain {xt}Tt=1 for a large T .

I Using optimal policies s′(·), compute the implied states {st}Tt=1.

I Process the data {st, xt}Tt=1 in whichever manner is needed for
your question of interest.

Some Notes
In practice, when simulating for application of structural estimation tech-
niques you may need to:

I Compare U(0, 1) shocks with thresholds implied by Πx.

I Simulate data with a panel structure, i.e., (sit, xit) for firms
i = 1, ..., N and t = 1, ..., T .

I Be careful with initial conditions, which can be overly influential for
persistent processes, by discarding “burn-in” periods.

I Be careful to set seeds for replicability of random draws in the
simulation of exogenous processes.
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