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Objectives of the session

Generalized Method of Moments

Weighting Matrix

Standard Errors

Maximum Likelihood

→ central limit, delta method, influence functions, bootstrap.
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Method of Moments (with an example)
Think first as a theorist : state and solve a model where agents
make optimal choices.

I Example: Manager observes value of the firm ṽ ∈ [0, 1] and can
disclose for a cost c > 0 or withhold to maximize price. Verrecchia
(83) shows that firms disclose if and only if v > τ , where

τ − c = E(ṽ |ṽ ≤ τ) =
τ

2
, (1)

so τ = 2c.

I Compute one moment of this model that is empirically observable:
for example, expected observed disclosure is

E(ṽ |ṽ ≥ τ) =
τ + 1

2
= c +

1
2

. (2)

I Match this moments to recover hidden parameter by, if expected
disclosure in a sample is d̂ = .6, then, d̂ = ĉ + 1

2 , so ĉ = .1.
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Method of Moments (2)
Under method of moments, same nb. of parameters as number of
moments. Formally, we are looking for a n−dimensional vector of
parameters to estimate θ, and we have theoretical moments, a
vector g(θ) (to be solved for ) and corresponding empirical
moments m̂, then:

θ̂ ∈ Argmin θ(g(θ) − m̂)′(g(θ) − m̂)

Example (cont.): assume that ṽ ∼ U[−b, b], so that τ = −b + 2c.

E(ṽ |ṽ ≥ τ) =
2c − b + b

2
= c, (3)

Var(ṽ |ṽ ≥ τ) =
1

12
(b − τ)2 =

(b − c)2

3
. (4)

So set ĉ = d̂ and denoting d̂2 = 0.1 as the empirical variance of

disclosures, set b̂ =

√
3d̂2 + ĉ = 1.15.

→ Estimation is “as difficult” as being able to solve a model
analytically or numerically.
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Simulated Method of Moments

Often, the theoretical moments g(θ) do not have an easy
expression, that is, we can’t explicitly write g(θ) = ... as a function
of the parameters we want to estimate.

Example (cont.): take previous model, but assume c̃ ∼ U[0, c] is
random, observed by investors but not the econometrician. We
want to estimate c.
I Pick b and c, simulate K times vi , ci , compute disclosure threshold

−b + 2ci and simulate disclosure di = 1 if vi > −b + 2ci and di = 0
otherwise, so create simulated sample with (di , divi)

K
i=1. Compute

the moments g(θ) from that simulation and match as in standard
method of moments.

I In practice: need to program a piece of code that conducts this
simulation g(θ) and another that puts this function into the function
to be minimized (g(θ) − m̂)′(g(θ) − m̂), since no longer in
closed-form.
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Generalized Method of Moments

Example (cont.): Suppose we return to model with ṽ ∼ U[0, 1] and
c fixed, but try to match variance and mean:

ĉ ∈ argmin(d̂ − c − 1/2)2 + (d̂2 − Var(ṽ |ṽ ≥ 2c)
︸ ︷︷ ︸

= 1
12 (1−2c)2

)2

Solution for d̂ = 0.6 and d̂2 = 0.1 is ĉ = 0. But should we weight
the two moments equally?

Generalized method moment: weight moments with suitably
chosen matrix W ,

θ̂ ∈ Argmin θ(g(θ) − m̂)′W (g(θ) − m̂),

where W is the inverse variance-covariance matrix of the
moments.
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Approaches to recovering optimal weighting matrix
Calculate Var(m̂) in closed-form (cumbersome; sometimes can be
done with delta method, see later).

If we can write the empirical moment as mean of independent
observations, i.e., using “influence” based method:

m̂ =
n∑

i=1

h(xi ; θ)

n
,

then

Var(m̂) =
Var(h(x̃ , θ))

n
.

So if h(.) is a vector of moments with components h1, ..., hJ(.),
build a matrix

V =






h1(x1; θ) . . . hJ(x1; θ)
... . . .

...
h1(xn; θ) . . . hJ(xn; θ)




 (5)

and compute the covariance of dataset V to get V̂ar(h(x̃ , θ)).
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Estimating variances with influence functions

What if m̂ 6=
∑n

i=1 h(xi , θ)/n is not additively separable in xi? Suppose

(more generally) that the moment m is defined by:

E(g(x̃ , m)) = 0.

Can use influence functions, i.e., same idea as (5):

V =






ψ1(x1; θ) . . . ψJ(x1; θ)
... . . .

...
ψ1(xn; θ) . . . ψJ(xn; θ)






compute the covariance of dataset V and divide by n to get Var(m̂).

How do we recover ψj(.)?
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Calculating influence functions
Intuitively, ψj(.) is the marginal effect of an observation x on m̂: it can
be shown (with a functional Taylor expansion) that:

ψ(x) = −E(∇mg(x̃ , m))−1g(x , m); (6)

if you know g(.), this expression can be evaluated.

An example: x = (y , z) moments are mean of z and coefficient m2 = β
in a linear regression y = α + βz. Step 1, find the g(.) = (g1(.), g2(.))
function:

g1 = m1 − z (7)

g2 = z(y − α − m2z) (8)

Step 2, differentiate to get ψ(.):

ψ(x) = −

(
1 0
0 −E(z̃2)

)−1(
m1 − z

z(y − α − m2z)

)

=

(
z − m1

y−α−m2z
E(z̃2)

)

(9)

→ influence function methods work for any estimator θ defined by
E(g(x̃ , θ)) = 0, not just estimating the covariance matrix of moments.
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Issues with optimal weighting matrix: dependence on
parameter θ

If h(., θ) depends on θ. In “principle,” no asymptotic efficiency loss
in using θ̂0 from a first-step estimate with identity matrix (most
common method in applied work)

→ of course, not necessarily true in practice, so alternatives are
iterated (replace first-step estimate by estimate, and repeat until
convergence) or one-step (write Ŵ (θ) as the part of the
estimation).
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Issues with optimal weighting matrix: Complicated
models
What if we can’t easily figure out g(.) (multi-step estimation,
non-parametrics); cumbersome analytical derivatives for g(.) or
unreliable numerical differentiation for ∇mg?

Philosophy of bootstrap: variance of a moment is also its
variability for a new empirical sample.

But we only have one sample??
→ we can rebuild a new sample by resampling (with replacement)
a new dataset from the empirical sample. Do it M times, compute
the moment each time, stack these estimates and calculate the
variance-covariance of this moments.

If m̂ does not depend on θ, then procedure is very fast, safe (no
risk of analytical error) and can accommodate any complexity in m̂
(e.g., non-parametric first steps, plug-ins, etc.).

If within-firm correlations, can block bootstrap by firm (i.e., sample
entire firms or blocks).
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Variance-Covariance Matrix: An Example
Let x̃i ∼ N(0, 1) with i = 1, . . . , n iid observations. Let

m̂ = (
∑ xi

n ,
∑ x2

i
n ) be a vector of two moments.

1. Analytical method (exact):

Var(m̂) =

(
E(x̃2)

n
E(x̃3)

n
E(x̃3)

n
E(x̃4)−E(x̃2)2

n

)

=

(1
n 0
0 2

n

)

2. Influence method, write:

V =






x1 x2
1

...
...

xn x2
n






Taking covariance matrix of this and multiply by 1/n.
3. Bootstrap. Sample for the dataset (xi)

n
i=1 to create new

bootstrapped samples (xj
i )

n
i=1 for j = 1, . . . , 100. Compute the

means of (xj
i , (x

j
i )

2)n
i=1, as a vector mj . Compute the covariance of

the matrix (mj)
500
j=1. Do not multiply by 1/n!
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Absolute error: mean and variance of normal
Compute absolute error as |Var(m̂) − V̂ar(m̂)| where Var(m̂) is the
analytical method (exact) and V̂ar(m̂) is computed with three methods:
(i) influence (blue), (ii) bootstrap over the sample dataset (xi)

n
i=1, (iii)

model bootstrap, i.e., resample x̃i from N(0, 1) (yellow).

J. Bertomeu AES Summer School 2020 Ph.D Course 13 / 48



Absolute error: mean and OLS coefficient
Same exercise but with mean and OLS coefficient in examples (7) and
(8). Compare influence to bootstrap as before when estimating the
error (relative to numerical model bootstrap).

J. Bertomeu AES Summer School 2020 Ph.D Course 14 / 48



Interesting properties of GMM

If moments can be satisfied only by one parameter (identification),
then the estimator is consistent.

Estimates are asymptotically normal with, given G = E(∇g(θ)),

√
n(θ̂ − θ0)

d
−→ N(0, (G′WG)−1) (10)

→ but can also avoid calculations or numerical differentiation by
bootstrapping standard-errors (more on this later).

Hansen J-test. Suppose we have k parameters to estimates, l
moments and sample size n, with k > l . Under the hypothesis that
the moments are satisfied,

J ≡ n(g(θ̂) − m̂)′Ŵ (g(θ̂) − m̂)
d
−→ χ2

k−l (11)
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Common questions with GMM - How do we choose
moments? Good properties to seek

Moments that seem to (intuitively) identify the parameters we’re looking for.
→ expected disclosure identifies truncation, variance of disclosure identifies of
untruncated information.

Moments we’re interested in explaining
→ expected disclosure captures tendency to hide bad news if higher than
unconditional information

Moments that can be precisely estimated
→ Variance is easier to estimate than kurtosis.

Moments that don’t over-rely in places the model is not designed to work well →
(with uniform) flat density of disclosures above the threshold.
→ sometimes can be seen ex-post, as a diagnostics on what the model cannot
do well: what if using that moment yields nonsensical result.
(with uniform) flat density of disclosures above the threshold.

Moments that capture different things and are not too redundant.
→ usually visible when the eigenvalues of the weighting matrix are too large.

Moments that are more robust to variations on details of the model, e.g.,
functional forms, additional noise terms, etc.
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Bootstrap: A simple approach for SEs
Generic term for obtaining estimates (of bias or SE) via resampling. Consider an
estimator θ̂ given data set Xn = (xi)

n
i=1.

I Resample j (large enough) times to create M resampled data sets X j
n for

j = 1, . . . M.
I Compute estimator θ̂j in each sample.
I Empirical distribution of θ̂j is an estimate of distribution of θ̂.

Two types of bootstrap:
I Parametric: if fully-specified model, resample X j

n from the model given
estimate θ̂.

I Non-parametric: resample X j
n by uniformly drawing (with repetition) n times

in Xn.
→ in panels, randomly draw clusters of observations (block bootstrap).

Examples:
I Estimate finite-sample bias 1

M

∑
θ̂j − θ̂.

I Construct asymmetric confidence intervals.
I SE for set identified models.
I Multi-step estimation procedure with non-standard SE.

Notes: (i) usually better finite-sample but not panacea (same small-sample
problems), (ii) can be infeasible if estimator does not compute fast (M slower),
(iii) bootstrap the SE of a bootstrapped estimator? (M2 slower)
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Maximum likelihood estimation

Why maximum likelihood?

for certain models, likelihoods can be easier to write (closed-form)
even when moments can only be simulated.

avoid headaches over which moments to choose, i.e., implicitly
selects moments efficiently.

Flexible tool: full likelihood, partial likelihood (if only part of the
likelihood is easy to use), simulated likelihood.

purist perspective: fully write the assumed data-generating
process, model the noise/disturbance terms if any, and estimate.

econometrics are usually more straightforward.

→ downside (?): MLE won’t work if theoretical model is too
misspecified, w/o modelling noise formally. In many dynamic models
with state variables, writing likelihood can be very difficult.
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Maximum likelihood Definition

Let f (x |θ) be a family of densities indexed by θ. For any sample
X = (xi)

n
i=1 drawn from f (x |θ0), define the average log likelihood as

L(X |θ) =
1
n

∑
ln f (xi |θ). (12)

The maximum likelihood estimator (MLE) for θ0 is such that

θ̂MLE ∈ argmaxθ L(Xn|θ). (13)

Under mild regularity conditions, plim θ̂MLE = θ0 and attains the
Cramér-Rao lower bound, i.e., no other consistent estimator has lower
asymptotic mean squared error.
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Maximum likelihood estimation - standard errors

Under certain regularity conditions (see Hayashi Chapter 7),

√
n(θ̂mle − θ0)

d
−→ N(0, I−1) (14)

where I = E(−
δ2 ln fθ0

(xi )

δθ2 ) is Fisher’s information matrix.

Note that Î can be consistently estimated as the hessian of the
average log-likelihood

Î =
δ2L(X |θ)

δθ2 |θ=θ̂mle
. (15)
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Disclosure theory with MLE
Consider example model in (1) where ṽi ∼ U[0, 1] with pdf gv and cdf
Gv , let di ∈ {0, 1} indicate disclosure and xi be the disclosure (if any).
Recall that the disclosure threshold is τ = 2c so that the likelihood of
this model is:

f (di , xi |c) = 1di=0 × 2c︸︷︷︸
Gv (τ)

+1di=1 × 1xi∈[2c,1]
︸ ︷︷ ︸

gv (xi )

. (16)

Note that L(c) = −∞ if there exists at least one disclosure xi below
2c. To be estimated, this model needs noise! For example, as in
Bertomeu, Ma and Marinovic (TAR, forth), can assume that cost is
random ci ∼ H(c; θ) with pdf h(.) and parameter θ to be estimated.

f (di , xi |θ) = 1di=0 ×
∫

min(1, 2c)h(c; θ)dc

+1di=1 ×
∫

1xi∈[2c,1]h(c; θ)dc.

Noise process must be modelled!
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Two more useful theorems

Theorem (Lindeberg-Lévy central limit theorem)
Let (Xi)

∞
i=1 be a sequence of i.i.d. random variables with finite mean M and variance

Σ. Define Sn =
∑n

i=1 Xi/n. Then,

√
n(Sn − M)

d
−→ N(0, Σ) (17)

That’s good but structural estimation need not be in terms of means!! So generalize to
any function of means (or functions of known estimator) using Delta Method:

Theorem (Delta Method)

Let Sn be a sequence of random variables such that
√

n(Sn − M)
d
−→ N(0, Σ) with Σ

positive definite. Let f be a function ∇f (M) 6= 0. Then,

√
n(f (Sn) − f (M))

d
−→ N(0,∇f (M)′Σ∇f (M)) (18)

Note: for the case f : RJ → R, the gradient is ∇f (x)′ = (f ′1(x1), . . . , f ′J(xJ))
′ where xi is

the i th component.
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Standard errors with Delta Method: Cheynel and
Liu-Watts, RASt

With probability p, the manager is uninformed about x , drawn from a distribution
with p.d.f. f (.), c.d.f. F (.), which we normalize to a mean zero.

If informed, the manager can disclose for a cost c (i.e., d(x) = x) or stay silent
(i.e., d(x) = ND) implying market price P(d), where P(x) = x and
P(ND) = E(x |d(x) = ND).

Manager discloses to maximize price, implying disclosure threshold τ with:

τ − c = E(x |ND). (19)
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Recovering implied disclosure costs
Lemma
Let q be the probability of disclosure,

c = τ +
q

1 − q
E(x̃ |x̃ ≥ τ). (20)

Proof. Start from disclosure equation:

τ − c = E(x |ND). (21)

Rewrite E(x |ND) using the law of total expectation:

0 = E(x) = qE(x |x ≥ τ) + (1 − q)E(x |ND),

where q is the probability of disclosure. That is,

E(x |ND) = −
q

1 − q
E(x̃ |x̃ ≥ τ).

and (20) follows by reinjecting this in (21).
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Estimation of Disclosure Cost

From (3), the following is a consistent estimator for any c,

ĉ = τ̂ +
q̂

1 − q̂
m̂,

where τ̂ is the minimum disclosure, q̂ is the sample disclosure
frequency and m̂ is the average disclosure.

For simplicity, assume here that τ̂ = τ is known (can be estimated
as min xi )
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Step 1: Use CLT to get Variance matrix for inputs to ĉ
Proposition

The estimator is consistent and asymptotically normal with
√

N(ĉ − c) →d N(0, σ2
c ), (22)

where σ2
c = qm2+(1−q)qvx

(1−q)3 and vx = Var(x |x ≥ k).

Proof. In what follows, let us denote x as the random variable corresponding to the
manager’s private information and d = 1 if a forecast is issued d = 0 otherwise. Let
the sample frequency of disclosure be denoted q̂ and the “average” sample forecast
(coding zeros for non-forecast periods) be denoted ŵ , then, from the central limit
theorem,

√
N(

(
q̂
ŵ

)

−

(
q

qm

)

) →d N(02,

(
Var(d) cov(d , dx)

cov(d , dx) Var(dx)

)

)

︸ ︷︷ ︸
V0

.
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Step 1: Use CLT to get Variance matrix for inputs to ĉ,
(cont.)

Proof. Simplifying this variance-covariance matrix and denoting m = E(x |x ≥ k) and
vx = Var(x |x ≥ k),

V0 =

(
q(1 − q) (1 − q)qm

(1 − q)qm q(vx+(1 − q)m2)

)

(23)

because Var(d) = q(1 − q);

cov(d , dx) = E(d2x) − E(d)E(dx)

= (1 − q)qE(x |x ≥ k) = (1 − q)qm;

and Var(dx) = E(d2(x)2) − E(dx)2

= qE(x2|x ≥ k) − (qE(x |x ≥ k))2

= q(Var(x |x ≥ k) + E(x |x ≥ k)2) − (qE(x |x ≥ k))2

= q(vx + (1 − p)m2).
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Step 2: apply delta method to obtain covariance matrix
for ĉ

Proof. Next, note that ĉ = G(p̂, ŵ) where G(y , z) = k + z
1−y . Applying

the delta method,
√

N(ĉ − c) →d N(0, AV0A
︸ ︷︷ ︸

σ2
c

)

such that A = ∇G = ( qm
(1−q)2 , 1

1−q ). Therefore,

σ2
c = (

qm
(1 − q)2 ,

1
1 − q

)

(
q(1 − q) (1 − q)qm

(1 − q)qm q(vx+(1 − q)m2)

)( qm
(1−q)2

1
1−q

)

=
q(qm + m(1 − q))2 + (1 − q)qvx

(1 − q)3 .
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Concluding Notes: Architecture of a Structural
Estimation

1. Load dataset.
2. Write a single code to compute empirical moment; if using simulated moments

(SMM), use the same code.
3. For SMM, write a program that simulates the same type of data that is available

empirically. Keep random seed constant at the start of program.
4. Program to compute an optimal weighting matrix, if more moments than

parameters.
5. If boostrapping, either (a) pre-draw M datasets and save them offline (better ), or

(b) write code that randomly samples M datasets when code is executed.
6. Write code to minimize objective method of moments objective function; avoid

local search or unbounded search as much as possible.
7. Write code to compute SEs, either by re-estimating the bootstrap samples or

using an equation.
8. Write code to simulate model for any parameters and use it to compute

unobservables from the estimated parameters or unobservables/observables
from counterfactuals.

9. Write code to compute other moments (not used in the estimation). Use this
code on data vs. simulation to report distance.
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